123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from .centernet_head import ConvLayer
- from ..keypoint_utils import get_affine_transform
- __all__ = ['CenterTrackHead']
- @register
- class CenterTrackHead(nn.Layer):
- """
- Args:
- in_channels (int): the channel number of input to CenterNetHead.
- num_classes (int): the number of classes, 1 (MOT17 dataset) by default.
- head_planes (int): the channel number in all head, 256 by default.
- task (str): the type of task for regression, 'tracking' by default.
- loss_weight (dict): the weight of each loss.
- add_ltrb_amodal (bool): whether to add ltrb_amodal branch, False by default.
- """
- __shared__ = ['num_classes']
- def __init__(self,
- in_channels,
- num_classes=1,
- head_planes=256,
- task='tracking',
- loss_weight={
- 'tracking': 1.0,
- 'ltrb_amodal': 0.1,
- },
- add_ltrb_amodal=True):
- super(CenterTrackHead, self).__init__()
- self.task = task
- self.loss_weight = loss_weight
- self.add_ltrb_amodal = add_ltrb_amodal
- # tracking head
- self.tracking = nn.Sequential(
- ConvLayer(
- in_channels, head_planes, kernel_size=3, padding=1, bias=True),
- nn.ReLU(),
- ConvLayer(
- head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True))
- # ltrb_amodal head
- if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
- self.ltrb_amodal = nn.Sequential(
- ConvLayer(
- in_channels,
- head_planes,
- kernel_size=3,
- padding=1,
- bias=True),
- nn.ReLU(),
- ConvLayer(
- head_planes,
- 4,
- kernel_size=1,
- stride=1,
- padding=0,
- bias=True))
- # TODO: add more tasks
- @classmethod
- def from_config(cls, cfg, input_shape):
- if isinstance(input_shape, (list, tuple)):
- input_shape = input_shape[0]
- return {'in_channels': input_shape.channels}
- def forward(self,
- feat,
- inputs,
- bboxes=None,
- bbox_inds=None,
- topk_clses=None,
- topk_ys=None,
- topk_xs=None):
- tracking = self.tracking(feat)
- head_outs = {'tracking': tracking}
- if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
- ltrb_amodal = self.ltrb_amodal(feat)
- head_outs.update({'ltrb_amodal': ltrb_amodal})
- if self.training:
- losses = self.get_loss(inputs, self.loss_weight, head_outs)
- return losses
- else:
- ret = self.generic_decode(head_outs, bboxes, bbox_inds, topk_ys,
- topk_xs)
- return ret
- def get_loss(self, inputs, weights, head_outs):
- index = inputs['index'].unsqueeze(2)
- mask = inputs['index_mask'].unsqueeze(2)
- batch_inds = list()
- for i in range(head_outs['tracking'].shape[0]):
- batch_ind = paddle.full(
- shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
- batch_inds.append(batch_ind)
- batch_inds = paddle.concat(batch_inds, axis=0)
- index = paddle.concat(x=[batch_inds, index], axis=2)
- # 1.tracking head loss: L1 loss
- tracking = head_outs['tracking'].transpose([0, 2, 3, 1])
- tracking_target = inputs['tracking']
- bs, _, _, c = tracking.shape
- tracking = tracking.reshape([bs, -1, c])
- pos_tracking = paddle.gather_nd(tracking, index=index)
- tracking_mask = paddle.cast(
- paddle.expand_as(mask, pos_tracking), dtype=pos_tracking.dtype)
- pos_num = tracking_mask.sum()
- tracking_mask.stop_gradient = True
- tracking_target.stop_gradient = True
- tracking_loss = F.l1_loss(
- pos_tracking * tracking_mask,
- tracking_target * tracking_mask,
- reduction='sum')
- tracking_loss = tracking_loss / (pos_num + 1e-4)
- # 2.ltrb_amodal head loss(optinal): L1 loss
- if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
- ltrb_amodal = head_outs['ltrb_amodal'].transpose([0, 2, 3, 1])
- ltrb_amodal_target = inputs['ltrb_amodal']
- bs, _, _, c = ltrb_amodal.shape
- ltrb_amodal = ltrb_amodal.reshape([bs, -1, c])
- pos_ltrb_amodal = paddle.gather_nd(ltrb_amodal, index=index)
- ltrb_amodal_mask = paddle.cast(
- paddle.expand_as(mask, pos_ltrb_amodal),
- dtype=pos_ltrb_amodal.dtype)
- pos_num = ltrb_amodal_mask.sum()
- ltrb_amodal_mask.stop_gradient = True
- ltrb_amodal_target.stop_gradient = True
- ltrb_amodal_loss = F.l1_loss(
- pos_ltrb_amodal * ltrb_amodal_mask,
- ltrb_amodal_target * ltrb_amodal_mask,
- reduction='sum')
- ltrb_amodal_loss = ltrb_amodal_loss / (pos_num + 1e-4)
- losses = {'tracking_loss': tracking_loss, }
- plugin_loss = weights['tracking'] * tracking_loss
- if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
- losses.update({'ltrb_amodal_loss': ltrb_amodal_loss})
- plugin_loss += weights['ltrb_amodal'] * ltrb_amodal_loss
- losses.update({'plugin_loss': plugin_loss})
- return losses
- def generic_decode(self, head_outs, bboxes, bbox_inds, topk_ys, topk_xs):
- topk_ys = paddle.floor(topk_ys) # note: More accurate
- topk_xs = paddle.floor(topk_xs)
- cts = paddle.concat([topk_xs, topk_ys], 1)
- ret = {'bboxes': bboxes, 'cts': cts}
- regression_heads = ['tracking'] # todo: add more tasks
- for head in regression_heads:
- if head in head_outs:
- ret[head] = _tranpose_and_gather_feat(head_outs[head],
- bbox_inds)
- if 'ltrb_amodal' in head_outs:
- ltrb_amodal = head_outs['ltrb_amodal']
- ltrb_amodal = _tranpose_and_gather_feat(ltrb_amodal, bbox_inds)
- bboxes_amodal = paddle.concat(
- [
- topk_xs * 1.0 + ltrb_amodal[..., 0:1],
- topk_ys * 1.0 + ltrb_amodal[..., 1:2],
- topk_xs * 1.0 + ltrb_amodal[..., 2:3],
- topk_ys * 1.0 + ltrb_amodal[..., 3:4]
- ],
- axis=1)
- ret['bboxes'] = paddle.concat([bboxes[:, 0:2], bboxes_amodal], 1)
- # cls_id, score, x0, y0, x1, y1
- return ret
- def centertrack_post_process(self, dets, meta, out_thresh):
- if not ('bboxes' in dets):
- return [{}]
- preds = []
- c, s = meta['center'].numpy(), meta['scale'].numpy()
- h, w = meta['out_height'].numpy(), meta['out_width'].numpy()
- trans = get_affine_transform(
- center=c[0],
- input_size=s[0],
- rot=0,
- output_size=[w[0], h[0]],
- shift=(0., 0.),
- inv=True).astype(np.float32)
- for i, dets_bbox in enumerate(dets['bboxes']):
- if dets_bbox[1] < out_thresh:
- break
- item = {}
- item['score'] = dets_bbox[1]
- item['class'] = int(dets_bbox[0]) + 1
- item['ct'] = transform_preds_with_trans(
- dets['cts'][i].reshape([1, 2]), trans).reshape(2)
- if 'tracking' in dets:
- tracking = transform_preds_with_trans(
- (dets['tracking'][i] + dets['cts'][i]).reshape([1, 2]),
- trans).reshape(2)
- item['tracking'] = tracking - item['ct']
- if 'bboxes' in dets:
- bbox = transform_preds_with_trans(
- dets_bbox[2:6].reshape([2, 2]), trans).reshape(4)
- item['bbox'] = bbox
- preds.append(item)
- return preds
- def transform_preds_with_trans(coords, trans):
- target_coords = np.ones((coords.shape[0], 3), np.float32)
- target_coords[:, :2] = coords
- target_coords = np.dot(trans, target_coords.transpose()).transpose()
- return target_coords[:, :2]
- def _tranpose_and_gather_feat(feat, bbox_inds):
- feat = feat.transpose([0, 2, 3, 1])
- feat = feat.reshape([-1, feat.shape[3]])
- feat = paddle.gather(feat, bbox_inds)
- return feat
|