123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import paddle
- import numpy as np
- def bbox2delta(src_boxes, tgt_boxes, weights=[1.0, 1.0, 1.0, 1.0]):
- """Encode bboxes to deltas.
- """
- src_w = src_boxes[:, 2] - src_boxes[:, 0]
- src_h = src_boxes[:, 3] - src_boxes[:, 1]
- src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
- src_ctr_y = src_boxes[:, 1] + 0.5 * src_h
- tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
- tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
- tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
- tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h
- wx, wy, ww, wh = weights
- dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
- dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
- dw = ww * paddle.log(tgt_w / src_w)
- dh = wh * paddle.log(tgt_h / src_h)
- deltas = paddle.stack((dx, dy, dw, dh), axis=1)
- return deltas
- def delta2bbox(deltas, boxes, weights=[1.0, 1.0, 1.0, 1.0], max_shape=None):
- """Decode deltas to boxes. Used in RCNNBox,CascadeHead,RCNNHead,RetinaHead.
- Note: return tensor shape [n,1,4]
- If you want to add a reshape, please add after the calling code instead of here.
- """
- clip_scale = math.log(1000.0 / 16)
- widths = boxes[:, 2] - boxes[:, 0]
- heights = boxes[:, 3] - boxes[:, 1]
- ctr_x = boxes[:, 0] + 0.5 * widths
- ctr_y = boxes[:, 1] + 0.5 * heights
- wx, wy, ww, wh = weights
- dx = deltas[:, 0::4] / wx
- dy = deltas[:, 1::4] / wy
- dw = deltas[:, 2::4] / ww
- dh = deltas[:, 3::4] / wh
- # Prevent sending too large values into paddle.exp()
- dw = paddle.clip(dw, max=clip_scale)
- dh = paddle.clip(dh, max=clip_scale)
- pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
- pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
- pred_w = paddle.exp(dw) * widths.unsqueeze(1)
- pred_h = paddle.exp(dh) * heights.unsqueeze(1)
- pred_boxes = []
- pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
- pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
- pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
- pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
- pred_boxes = paddle.stack(pred_boxes, axis=-1)
- if max_shape is not None:
- pred_boxes[..., 0::2] = pred_boxes[..., 0::2].clip(
- min=0, max=max_shape[1])
- pred_boxes[..., 1::2] = pred_boxes[..., 1::2].clip(
- min=0, max=max_shape[0])
- return pred_boxes
- def bbox2delta_v2(src_boxes,
- tgt_boxes,
- delta_mean=[0.0, 0.0, 0.0, 0.0],
- delta_std=[1.0, 1.0, 1.0, 1.0]):
- """Encode bboxes to deltas.
- Modified from bbox2delta() which just use weight parameters to multiply deltas.
- """
- src_w = src_boxes[:, 2] - src_boxes[:, 0]
- src_h = src_boxes[:, 3] - src_boxes[:, 1]
- src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
- src_ctr_y = src_boxes[:, 1] + 0.5 * src_h
- tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
- tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
- tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
- tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h
- dx = (tgt_ctr_x - src_ctr_x) / src_w
- dy = (tgt_ctr_y - src_ctr_y) / src_h
- dw = paddle.log(tgt_w / src_w)
- dh = paddle.log(tgt_h / src_h)
- deltas = paddle.stack((dx, dy, dw, dh), axis=1)
- deltas = (
- deltas - paddle.to_tensor(delta_mean)) / paddle.to_tensor(delta_std)
- return deltas
- def delta2bbox_v2(deltas,
- boxes,
- delta_mean=[0.0, 0.0, 0.0, 0.0],
- delta_std=[1.0, 1.0, 1.0, 1.0],
- max_shape=None,
- ctr_clip=32.0):
- """Decode deltas to bboxes.
- Modified from delta2bbox() which just use weight parameters to be divided by deltas.
- Used in YOLOFHead.
- Note: return tensor shape [n,1,4]
- If you want to add a reshape, please add after the calling code instead of here.
- """
- clip_scale = math.log(1000.0 / 16)
- widths = boxes[:, 2] - boxes[:, 0]
- heights = boxes[:, 3] - boxes[:, 1]
- ctr_x = boxes[:, 0] + 0.5 * widths
- ctr_y = boxes[:, 1] + 0.5 * heights
- deltas = deltas * paddle.to_tensor(delta_std) + paddle.to_tensor(delta_mean)
- dx = deltas[:, 0::4]
- dy = deltas[:, 1::4]
- dw = deltas[:, 2::4]
- dh = deltas[:, 3::4]
- # Prevent sending too large values into paddle.exp()
- dx = dx * widths.unsqueeze(1)
- dy = dy * heights.unsqueeze(1)
- if ctr_clip is not None:
- dx = paddle.clip(dx, max=ctr_clip, min=-ctr_clip)
- dy = paddle.clip(dy, max=ctr_clip, min=-ctr_clip)
- dw = paddle.clip(dw, max=clip_scale)
- dh = paddle.clip(dh, max=clip_scale)
- else:
- dw = dw.clip(min=-ctr_clip, max=ctr_clip)
- dh = dh.clip(min=-ctr_clip, max=ctr_clip)
- pred_ctr_x = dx + ctr_x.unsqueeze(1)
- pred_ctr_y = dy + ctr_y.unsqueeze(1)
- pred_w = paddle.exp(dw) * widths.unsqueeze(1)
- pred_h = paddle.exp(dh) * heights.unsqueeze(1)
- pred_boxes = []
- pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
- pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
- pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
- pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
- pred_boxes = paddle.stack(pred_boxes, axis=-1)
- if max_shape is not None:
- pred_boxes[..., 0::2] = pred_boxes[..., 0::2].clip(
- min=0, max=max_shape[1])
- pred_boxes[..., 1::2] = pred_boxes[..., 1::2].clip(
- min=0, max=max_shape[0])
- return pred_boxes
- def expand_bbox(bboxes, scale):
- w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
- h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
- x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
- y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
- w_half *= scale
- h_half *= scale
- bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
- bboxes_exp[:, 0] = x_c - w_half
- bboxes_exp[:, 2] = x_c + w_half
- bboxes_exp[:, 1] = y_c - h_half
- bboxes_exp[:, 3] = y_c + h_half
- return bboxes_exp
- def clip_bbox(boxes, im_shape):
- h, w = im_shape[0], im_shape[1]
- x1 = boxes[:, 0].clip(0, w)
- y1 = boxes[:, 1].clip(0, h)
- x2 = boxes[:, 2].clip(0, w)
- y2 = boxes[:, 3].clip(0, h)
- return paddle.stack([x1, y1, x2, y2], axis=1)
- def nonempty_bbox(boxes, min_size=0, return_mask=False):
- w = boxes[:, 2] - boxes[:, 0]
- h = boxes[:, 3] - boxes[:, 1]
- mask = paddle.logical_and(h > min_size, w > min_size)
- if return_mask:
- return mask
- keep = paddle.nonzero(mask).flatten()
- return keep
- def bbox_area(boxes):
- return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
- def bbox_overlaps(boxes1, boxes2):
- """
- Calculate overlaps between boxes1 and boxes2
- Args:
- boxes1 (Tensor): boxes with shape [M, 4]
- boxes2 (Tensor): boxes with shape [N, 4]
- Return:
- overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
- """
- M = boxes1.shape[0]
- N = boxes2.shape[0]
- if M * N == 0:
- return paddle.zeros([M, N], dtype='float32')
- area1 = bbox_area(boxes1)
- area2 = bbox_area(boxes2)
- xy_max = paddle.minimum(
- paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
- xy_min = paddle.maximum(
- paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
- width_height = xy_max - xy_min
- width_height = width_height.clip(min=0)
- inter = width_height.prod(axis=2)
- overlaps = paddle.where(inter > 0, inter /
- (paddle.unsqueeze(area1, 1) + area2 - inter),
- paddle.zeros_like(inter))
- return overlaps
- def batch_bbox_overlaps(bboxes1,
- bboxes2,
- mode='iou',
- is_aligned=False,
- eps=1e-6):
- """Calculate overlap between two set of bboxes.
- If ``is_aligned `` is ``False``, then calculate the overlaps between each
- bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned
- pair of bboxes1 and bboxes2.
- Args:
- bboxes1 (Tensor): shape (B, m, 4) in <x1, y1, x2, y2> format or empty.
- bboxes2 (Tensor): shape (B, n, 4) in <x1, y1, x2, y2> format or empty.
- B indicates the batch dim, in shape (B1, B2, ..., Bn).
- If ``is_aligned `` is ``True``, then m and n must be equal.
- mode (str): "iou" (intersection over union) or "iof" (intersection over
- foreground).
- is_aligned (bool, optional): If True, then m and n must be equal.
- Default False.
- eps (float, optional): A value added to the denominator for numerical
- stability. Default 1e-6.
- Returns:
- Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
- """
- assert mode in ['iou', 'iof', 'giou'], 'Unsupported mode {}'.format(mode)
- # Either the boxes are empty or the length of boxes's last dimenstion is 4
- assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0)
- assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0)
- # Batch dim must be the same
- # Batch dim: (B1, B2, ... Bn)
- assert bboxes1.shape[:-2] == bboxes2.shape[:-2]
- batch_shape = bboxes1.shape[:-2]
- rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0
- cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0
- if is_aligned:
- assert rows == cols
- if rows * cols == 0:
- if is_aligned:
- return paddle.full(batch_shape + (rows, ), 1)
- else:
- return paddle.full(batch_shape + (rows, cols), 1)
- area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1])
- area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1])
- if is_aligned:
- lt = paddle.maximum(bboxes1[:, :2], bboxes2[:, :2]) # [B, rows, 2]
- rb = paddle.minimum(bboxes1[:, 2:], bboxes2[:, 2:]) # [B, rows, 2]
- wh = (rb - lt).clip(min=0) # [B, rows, 2]
- overlap = wh[:, 0] * wh[:, 1]
- if mode in ['iou', 'giou']:
- union = area1 + area2 - overlap
- else:
- union = area1
- if mode == 'giou':
- enclosed_lt = paddle.minimum(bboxes1[:, :2], bboxes2[:, :2])
- enclosed_rb = paddle.maximum(bboxes1[:, 2:], bboxes2[:, 2:])
- else:
- lt = paddle.maximum(bboxes1[:, :2].reshape([rows, 1, 2]),
- bboxes2[:, :2]) # [B, rows, cols, 2]
- rb = paddle.minimum(bboxes1[:, 2:].reshape([rows, 1, 2]),
- bboxes2[:, 2:]) # [B, rows, cols, 2]
- wh = (rb - lt).clip(min=0) # [B, rows, cols, 2]
- overlap = wh[:, :, 0] * wh[:, :, 1]
- if mode in ['iou', 'giou']:
- union = area1.reshape([rows,1]) \
- + area2.reshape([1,cols]) - overlap
- else:
- union = area1[:, None]
- if mode == 'giou':
- enclosed_lt = paddle.minimum(bboxes1[:, :2].reshape([rows, 1, 2]),
- bboxes2[:, :2])
- enclosed_rb = paddle.maximum(bboxes1[:, 2:].reshape([rows, 1, 2]),
- bboxes2[:, 2:])
- eps = paddle.to_tensor([eps])
- union = paddle.maximum(union, eps)
- ious = overlap / union
- if mode in ['iou', 'iof']:
- return ious
- # calculate gious
- enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0)
- enclose_area = enclose_wh[:, :, 0] * enclose_wh[:, :, 1]
- enclose_area = paddle.maximum(enclose_area, eps)
- gious = ious - (enclose_area - union) / enclose_area
- return 1 - gious
- def xywh2xyxy(box):
- x, y, w, h = box
- x1 = x - w * 0.5
- y1 = y - h * 0.5
- x2 = x + w * 0.5
- y2 = y + h * 0.5
- return [x1, y1, x2, y2]
- def make_grid(h, w, dtype):
- yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
- return paddle.stack((xv, yv), 2).cast(dtype=dtype)
- def decode_yolo(box, anchor, downsample_ratio):
- """decode yolo box
- Args:
- box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
- anchor (list): anchor with the shape [na, 2]
- downsample_ratio (int): downsample ratio, default 32
- scale (float): scale, default 1.
- Return:
- box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
- """
- x, y, w, h = box
- na, grid_h, grid_w = x.shape[1:4]
- grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
- x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
- y1 = (y + grid[:, :, :, :, 1:2]) / grid_h
- anchor = paddle.to_tensor(anchor, dtype=x.dtype)
- anchor = anchor.reshape((1, na, 1, 1, 2))
- w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
- h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)
- return [x1, y1, w1, h1]
- def batch_iou_similarity(box1, box2, eps=1e-9):
- """Calculate iou of box1 and box2 in batch
- Args:
- box1 (Tensor): box with the shape [N, M1, 4]
- box2 (Tensor): box with the shape [N, M2, 4]
- Return:
- iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
- """
- box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
- box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
- px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
- gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
- x1y1 = paddle.maximum(px1y1, gx1y1)
- x2y2 = paddle.minimum(px2y2, gx2y2)
- overlap = (x2y2 - x1y1).clip(0).prod(-1)
- area1 = (px2y2 - px1y1).clip(0).prod(-1)
- area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
- union = area1 + area2 - overlap + eps
- return overlap / union
- def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
- """calculate the iou of box1 and box2
- Args:
- box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
- box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
- giou (bool): whether use giou or not, default False
- diou (bool): whether use diou or not, default False
- ciou (bool): whether use ciou or not, default False
- eps (float): epsilon to avoid divide by zero
- Return:
- iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
- """
- px1, py1, px2, py2 = box1
- gx1, gy1, gx2, gy2 = box2
- x1 = paddle.maximum(px1, gx1)
- y1 = paddle.maximum(py1, gy1)
- x2 = paddle.minimum(px2, gx2)
- y2 = paddle.minimum(py2, gy2)
- overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))
- area1 = (px2 - px1) * (py2 - py1)
- area1 = area1.clip(0)
- area2 = (gx2 - gx1) * (gy2 - gy1)
- area2 = area2.clip(0)
- union = area1 + area2 - overlap + eps
- iou = overlap / union
- if giou or ciou or diou:
- # convex w, h
- cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
- ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
- if giou:
- c_area = cw * ch + eps
- return iou - (c_area - union) / c_area
- else:
- # convex diagonal squared
- c2 = cw**2 + ch**2 + eps
- # center distance
- rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
- if diou:
- return iou - rho2 / c2
- else:
- w1, h1 = px2 - px1, py2 - py1 + eps
- w2, h2 = gx2 - gx1, gy2 - gy1 + eps
- delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
- v = (4 / math.pi**2) * paddle.pow(delta, 2)
- alpha = v / (1 + eps - iou + v)
- alpha.stop_gradient = True
- return iou - (rho2 / c2 + v * alpha)
- else:
- return iou
- def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
- """
- Calculate the iou of box1 and box2 with numpy.
- Args:
- box1 (ndarray): [N, 4]
- box2 (ndarray): [M, 4], usually N != M
- x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True
- eps (float): epsilon to avoid divide by zero
- Return:
- iou (ndarray): iou of box1 and box2, [N, M]
- """
- N, M = len(box1), len(box2) # usually N != M
- if x1y1x2y2:
- b1_x1, b1_y1 = box1[:, 0], box1[:, 1]
- b1_x2, b1_y2 = box1[:, 2], box1[:, 3]
- b2_x1, b2_y1 = box2[:, 0], box2[:, 1]
- b2_x2, b2_y2 = box2[:, 2], box2[:, 3]
- else:
- # cxcywh style
- # Transform from center and width to exact coordinates
- b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
- b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
- b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
- b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
- # get the coordinates of the intersection rectangle
- inter_rect_x1 = np.zeros((N, M), dtype=np.float32)
- inter_rect_y1 = np.zeros((N, M), dtype=np.float32)
- inter_rect_x2 = np.zeros((N, M), dtype=np.float32)
- inter_rect_y2 = np.zeros((N, M), dtype=np.float32)
- for i in range(len(box2)):
- inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i])
- inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i])
- inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i])
- inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i])
- # Intersection area
- inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum(
- inter_rect_y2 - inter_rect_y1, 0)
- # Union Area
- b1_area = np.repeat(
- ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1)
- b2_area = np.repeat(
- ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0)
- ious = inter_area / (b1_area + b2_area - inter_area + eps)
- return ious
- def bbox2distance(points, bbox, max_dis=None, eps=0.1):
- """Decode bounding box based on distances.
- Args:
- points (Tensor): Shape (n, 2), [x, y].
- bbox (Tensor): Shape (n, 4), "xyxy" format
- max_dis (float): Upper bound of the distance.
- eps (float): a small value to ensure target < max_dis, instead <=
- Returns:
- Tensor: Decoded distances.
- """
- left = points[:, 0] - bbox[:, 0]
- top = points[:, 1] - bbox[:, 1]
- right = bbox[:, 2] - points[:, 0]
- bottom = bbox[:, 3] - points[:, 1]
- if max_dis is not None:
- left = left.clip(min=0, max=max_dis - eps)
- top = top.clip(min=0, max=max_dis - eps)
- right = right.clip(min=0, max=max_dis - eps)
- bottom = bottom.clip(min=0, max=max_dis - eps)
- return paddle.stack([left, top, right, bottom], -1)
- def distance2bbox(points, distance, max_shape=None):
- """Decode distance prediction to bounding box.
- Args:
- points (Tensor): Shape (n, 2), [x, y].
- distance (Tensor): Distance from the given point to 4
- boundaries (left, top, right, bottom).
- max_shape (tuple): Shape of the image.
- Returns:
- Tensor: Decoded bboxes.
- """
- x1 = points[:, 0] - distance[:, 0]
- y1 = points[:, 1] - distance[:, 1]
- x2 = points[:, 0] + distance[:, 2]
- y2 = points[:, 1] + distance[:, 3]
- if max_shape is not None:
- x1 = x1.clip(min=0, max=max_shape[1])
- y1 = y1.clip(min=0, max=max_shape[0])
- x2 = x2.clip(min=0, max=max_shape[1])
- y2 = y2.clip(min=0, max=max_shape[0])
- return paddle.stack([x1, y1, x2, y2], -1)
- def bbox_center(boxes):
- """Get bbox centers from boxes.
- Args:
- boxes (Tensor): boxes with shape (..., 4), "xmin, ymin, xmax, ymax" format.
- Returns:
- Tensor: boxes centers with shape (..., 2), "cx, cy" format.
- """
- boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2
- boxes_cy = (boxes[..., 1] + boxes[..., 3]) / 2
- return paddle.stack([boxes_cx, boxes_cy], axis=-1)
- def batch_distance2bbox(points, distance, max_shapes=None):
- """Decode distance prediction to bounding box for batch.
- Args:
- points (Tensor): [B, ..., 2], "xy" format
- distance (Tensor): [B, ..., 4], "ltrb" format
- max_shapes (Tensor): [B, 2], "h,w" format, Shape of the image.
- Returns:
- Tensor: Decoded bboxes, "x1y1x2y2" format.
- """
- lt, rb = paddle.split(distance, 2, -1)
- # while tensor add parameters, parameters should be better placed on the second place
- x1y1 = -lt + points
- x2y2 = rb + points
- out_bbox = paddle.concat([x1y1, x2y2], -1)
- if max_shapes is not None:
- max_shapes = max_shapes.flip(-1).tile([1, 2])
- delta_dim = out_bbox.ndim - max_shapes.ndim
- for _ in range(delta_dim):
- max_shapes.unsqueeze_(1)
- out_bbox = paddle.where(out_bbox < max_shapes, out_bbox, max_shapes)
- out_bbox = paddle.where(out_bbox > 0, out_bbox,
- paddle.zeros_like(out_bbox))
- return out_bbox
- def iou_similarity(box1, box2, eps=1e-10):
- """Calculate iou of box1 and box2
- Args:
- box1 (Tensor): box with the shape [M1, 4]
- box2 (Tensor): box with the shape [M2, 4]
- Return:
- iou (Tensor): iou between box1 and box2 with the shape [M1, M2]
- """
- box1 = box1.unsqueeze(1) # [M1, 4] -> [M1, 1, 4]
- box2 = box2.unsqueeze(0) # [M2, 4] -> [1, M2, 4]
- px1y1, px2y2 = box1[:, :, 0:2], box1[:, :, 2:4]
- gx1y1, gx2y2 = box2[:, :, 0:2], box2[:, :, 2:4]
- x1y1 = paddle.maximum(px1y1, gx1y1)
- x2y2 = paddle.minimum(px2y2, gx2y2)
- overlap = (x2y2 - x1y1).clip(0).prod(-1)
- area1 = (px2y2 - px1y1).clip(0).prod(-1)
- area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
- union = area1 + area2 - overlap + eps
- return overlap / union
|