123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import math
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- import numpy as np
- from paddle.nn.initializer import Constant
- from ppdet.modeling.shape_spec import ShapeSpec
- from ppdet.core.workspace import register, serializable
- from .transformer_utils import zeros_, DropPath, Identity
- class Mlp(nn.Layer):
- def __init__(self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- class Attention(nn.Layer):
- def __init__(self,
- dim,
- num_heads=8,
- qkv_bias=False,
- qk_scale=None,
- attn_drop=0.,
- proj_drop=0.,
- window_size=None):
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim**-0.5
- self.qkv = nn.Linear(dim, dim * 3, bias_attr=False)
- if qkv_bias:
- self.q_bias = self.create_parameter(
- shape=([dim]), default_initializer=zeros_)
- self.v_bias = self.create_parameter(
- shape=([dim]), default_initializer=zeros_)
- else:
- self.q_bias = None
- self.v_bias = None
- if window_size:
- self.window_size = window_size
- self.num_relative_distance = (2 * window_size[0] - 1) * (
- 2 * window_size[1] - 1) + 3
- self.relative_position_bias_table = self.create_parameter(
- shape=(self.num_relative_distance, num_heads),
- default_initializer=zeros_) # 2*Wh-1 * 2*Ww-1, nH
- # cls to token & token 2 cls & cls to cls
- # get pair-wise relative position index for each token inside the window
- coords_h = paddle.arange(window_size[0])
- coords_w = paddle.arange(window_size[1])
- coords = paddle.stack(paddle.meshgrid(
- [coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
- coords_flatten_1 = paddle.unsqueeze(coords_flatten, 2)
- coords_flatten_2 = paddle.unsqueeze(coords_flatten, 1)
- relative_coords = coords_flatten_1.clone() - coords_flatten_2.clone(
- )
- #relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Wh
- relative_coords = relative_coords.transpose(
- (1, 2, 0)) #.contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += window_size[
- 0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
- relative_position_index = \
- paddle.zeros(shape=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(
- -1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = self.num_relative_distance - 3
- relative_position_index[0:, 0] = self.num_relative_distance - 2
- relative_position_index[0, 0] = self.num_relative_distance - 1
- self.register_buffer("relative_position_index",
- relative_position_index)
- # trunc_normal_(self.relative_position_bias_table, std=.0)
- else:
- self.window_size = None
- self.relative_position_bias_table = None
- self.relative_position_index = None
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- def forward(self, x, rel_pos_bias=None):
- x_shape = paddle.shape(x)
- N, C = x_shape[1], x_shape[2]
- qkv_bias = None
- if self.q_bias is not None:
- qkv_bias = paddle.concat(
- (self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias))
- qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)
- qkv = qkv.reshape((-1, N, 3, self.num_heads,
- C // self.num_heads)).transpose((2, 0, 3, 1, 4))
- q, k, v = qkv[0], qkv[1], qkv[2]
- attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
- if self.relative_position_bias_table is not None:
- relative_position_bias = self.relative_position_bias_table[
- self.relative_position_index.reshape([-1])].reshape([
- self.window_size[0] * self.window_size[1] + 1,
- self.window_size[0] * self.window_size[1] + 1, -1
- ]) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.transpose(
- (2, 0, 1)) #.contiguous() # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
- if rel_pos_bias is not None:
- attn = attn + rel_pos_bias
- attn = nn.functional.softmax(attn, axis=-1)
- attn = self.attn_drop(attn)
- x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class Block(nn.Layer):
- def __init__(self,
- dim,
- num_heads,
- mlp_ratio=4.,
- qkv_bias=False,
- qk_scale=None,
- drop=0.,
- attn_drop=0.,
- drop_path=0.,
- window_size=None,
- init_values=None,
- act_layer=nn.GELU,
- norm_layer='nn.LayerNorm',
- epsilon=1e-5):
- super().__init__()
- self.norm1 = nn.LayerNorm(dim, epsilon=1e-6)
- self.attn = Attention(
- dim,
- num_heads=num_heads,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- attn_drop=attn_drop,
- proj_drop=drop,
- window_size=window_size)
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
- self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
- self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop)
- if init_values is not None:
- self.gamma_1 = self.create_parameter(
- shape=([dim]), default_initializer=Constant(value=init_values))
- self.gamma_2 = self.create_parameter(
- shape=([dim]), default_initializer=Constant(value=init_values))
- else:
- self.gamma_1, self.gamma_2 = None, None
- def forward(self, x, rel_pos_bias=None):
- if self.gamma_1 is None:
- x = x + self.drop_path(
- self.attn(
- self.norm1(x), rel_pos_bias=rel_pos_bias))
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- else:
- x = x + self.drop_path(self.gamma_1 * self.attn(
- self.norm1(x), rel_pos_bias=rel_pos_bias))
- x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
- return x
- class PatchEmbed(nn.Layer):
- """ Image to Patch Embedding
- """
- def __init__(self,
- img_size=[224, 224],
- patch_size=16,
- in_chans=3,
- embed_dim=768):
- super().__init__()
- self.num_patches_w = img_size[0] // patch_size
- self.num_patches_h = img_size[1] // patch_size
- num_patches = self.num_patches_w * self.num_patches_h
- self.patch_shape = (img_size[0] // patch_size,
- img_size[1] // patch_size)
- self.img_size = img_size
- self.patch_size = patch_size
- self.num_patches = num_patches
- self.proj = nn.Conv2D(
- in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
- @property
- def num_patches_in_h(self):
- return self.img_size[1] // self.patch_size
- @property
- def num_patches_in_w(self):
- return self.img_size[0] // self.patch_size
- def forward(self, x, mask=None):
- B, C, H, W = x.shape
- return self.proj(x)
- class RelativePositionBias(nn.Layer):
- def __init__(self, window_size, num_heads):
- super().__init__()
- self.window_size = window_size
- self.num_relative_distance = (2 * window_size[0] - 1) * (
- 2 * window_size[1] - 1) + 3
- self.relative_position_bias_table = self.create_parameter(
- shape=(self.num_relative_distance, num_heads),
- default_initialize=zeros_)
- # cls to token & token 2 cls & cls to cls
- # get pair-wise relative position index for each token inside the window
- coords_h = paddle.arange(window_size[0])
- coords_w = paddle.arange(window_size[1])
- coords = paddle.stack(paddle.meshgrid(
- [coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = coords.flatten(1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :,
- None] - coords_flatten[:,
- None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.transpos(
- (1, 2, 0)) # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
- relative_position_index = \
- paddle.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(
- -1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = self.num_relative_distance - 3
- relative_position_index[0:, 0] = self.num_relative_distance - 2
- relative_position_index[0, 0] = self.num_relative_distance - 1
- self.register_buffer("relative_position_index", relative_position_index)
- def forward(self):
- relative_position_bias = \
- self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1] + 1,
- self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
- return relative_position_bias.transpose((2, 0, 1)) # nH, Wh*Ww, Wh*Ww
- def get_sinusoid_encoding_table(n_position, d_hid, token=False):
- ''' Sinusoid position encoding table '''
- def get_position_angle_vec(position):
- return [
- position / np.power(10000, 2 * (hid_j // 2) / d_hid)
- for hid_j in range(d_hid)
- ]
- sinusoid_table = np.array(
- [get_position_angle_vec(pos_i) for pos_i in range(n_position)])
- sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
- sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
- if token:
- sinusoid_table = np.concatenate(
- [sinusoid_table, np.zeros([1, d_hid])], dim=0)
- return paddle.to_tensor(sinusoid_table, dtype=paddle.float32).unsqueeze(0)
- @register
- @serializable
- class VisionTransformer(nn.Layer):
- """ Vision Transformer with support for patch input
- """
- def __init__(self,
- img_size=[672, 1092],
- patch_size=16,
- in_chans=3,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4,
- qkv_bias=False,
- qk_scale=None,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.,
- norm_layer='nn.LayerNorm',
- init_values=None,
- use_rel_pos_bias=False,
- use_shared_rel_pos_bias=False,
- epsilon=1e-5,
- final_norm=False,
- pretrained=None,
- out_indices=[3, 5, 7, 11],
- use_abs_pos_emb=False,
- use_sincos_pos_emb=True,
- with_fpn=True,
- num_fpn_levels=4,
- use_checkpoint=False,
- **args):
- super().__init__()
- self.img_size = img_size
- self.embed_dim = embed_dim
- self.with_fpn = with_fpn
- self.use_checkpoint = use_checkpoint
- self.use_sincos_pos_emb = use_sincos_pos_emb
- self.use_rel_pos_bias = use_rel_pos_bias
- self.final_norm = final_norm
- self.out_indices = out_indices
- self.num_fpn_levels = num_fpn_levels
- if use_checkpoint:
- paddle.seed(0)
- self.patch_embed = PatchEmbed(
- img_size=img_size,
- patch_size=patch_size,
- in_chans=in_chans,
- embed_dim=embed_dim)
- self.pos_w = self.patch_embed.num_patches_in_w
- self.pos_h = self.patch_embed.num_patches_in_h
- self.cls_token = self.create_parameter(
- shape=(1, 1, embed_dim),
- default_initializer=paddle.nn.initializer.Constant(value=0.))
- if use_abs_pos_emb:
- self.pos_embed = self.create_parameter(
- shape=(1, self.pos_w * self.pos_h + 1, embed_dim),
- default_initializer=paddle.nn.initializer.TruncatedNormal(
- std=.02))
- elif use_sincos_pos_emb:
- pos_embed = self.build_2d_sincos_position_embedding(embed_dim)
- self.pos_embed = pos_embed
- self.pos_embed = self.create_parameter(shape=pos_embed.shape)
- self.pos_embed.set_value(pos_embed.numpy())
- self.pos_embed.stop_gradient = True
- else:
- self.pos_embed = None
- self.pos_drop = nn.Dropout(p=drop_rate)
- if use_shared_rel_pos_bias:
- self.rel_pos_bias = RelativePositionBias(
- window_size=self.patch_embed.patch_shape, num_heads=num_heads)
- else:
- self.rel_pos_bias = None
- dpr = np.linspace(0, drop_path_rate, depth)
- self.blocks = nn.LayerList([
- Block(
- dim=embed_dim,
- num_heads=num_heads,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- attn_drop=attn_drop_rate,
- drop_path=dpr[i],
- norm_layer=norm_layer,
- init_values=init_values,
- window_size=self.patch_embed.patch_shape
- if use_rel_pos_bias else None,
- epsilon=epsilon) for i in range(depth)
- ])
- self.pretrained = pretrained
- self.init_weight()
- assert len(out_indices) <= 4, ''
- self.out_indices = out_indices
- self.out_channels = [embed_dim for _ in range(num_fpn_levels)]
- self.out_strides = [4, 8, 16, 32][-num_fpn_levels:] if with_fpn else [
- patch_size for _ in range(len(out_indices))
- ]
- self.norm = Identity()
- if self.with_fpn:
- assert num_fpn_levels <= 4, ''
- self.init_fpn(
- embed_dim=embed_dim,
- patch_size=patch_size, )
- def init_weight(self):
- pretrained = self.pretrained
- if pretrained:
- if 'http' in pretrained: #URL
- path = paddle.utils.download.get_weights_path_from_url(
- pretrained)
- else: #model in local path
- path = pretrained
- load_state_dict = paddle.load(path)
- model_state_dict = self.state_dict()
- pos_embed_name = "pos_embed"
- if pos_embed_name in load_state_dict.keys():
- load_pos_embed = paddle.to_tensor(
- load_state_dict[pos_embed_name], dtype="float32")
- if self.pos_embed.shape != load_pos_embed.shape:
- pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1))
- model_state_dict[pos_embed_name] = self.resize_pos_embed(
- load_pos_embed, (pos_size, pos_size),
- (self.pos_h, self.pos_w))
- # self.set_state_dict(model_state_dict)
- load_state_dict[pos_embed_name] = model_state_dict[
- pos_embed_name]
- print("Load pos_embed and resize it from {} to {} .".format(
- load_pos_embed.shape, self.pos_embed.shape))
- self.set_state_dict(load_state_dict)
- print("Load load_state_dict....")
- def init_fpn(self, embed_dim=768, patch_size=16, out_with_norm=False):
- if patch_size == 16:
- self.fpn1 = nn.Sequential(
- nn.Conv2DTranspose(
- embed_dim, embed_dim, kernel_size=2, stride=2),
- nn.BatchNorm2D(embed_dim),
- nn.GELU(),
- nn.Conv2DTranspose(
- embed_dim, embed_dim, kernel_size=2, stride=2), )
- self.fpn2 = nn.Sequential(
- nn.Conv2DTranspose(
- embed_dim, embed_dim, kernel_size=2, stride=2), )
- self.fpn3 = Identity()
- self.fpn4 = nn.MaxPool2D(kernel_size=2, stride=2)
- elif patch_size == 8:
- self.fpn1 = nn.Sequential(
- nn.Conv2DTranspose(
- embed_dim, embed_dim, kernel_size=2, stride=2), )
- self.fpn2 = Identity()
- self.fpn3 = nn.Sequential(nn.MaxPool2D(kernel_size=2, stride=2), )
- self.fpn4 = nn.Sequential(nn.MaxPool2D(kernel_size=4, stride=4), )
- if not out_with_norm:
- self.norm = Identity()
- else:
- self.norm = nn.LayerNorm(embed_dim, epsilon=1e-6)
- def interpolate_pos_encoding(self, x, w, h):
- npatch = x.shape[1] - 1
- N = self.pos_embed.shape[1] - 1
- w0 = w // self.patch_embed.patch_size
- h0 = h // self.patch_embed.patch_size
- if npatch == N and w0 == self.patch_embed.num_patches_w and h0 == self.patch_embed.num_patches_h:
- return self.pos_embed
- class_pos_embed = self.pos_embed[:, 0]
- patch_pos_embed = self.pos_embed[:, 1:]
- dim = x.shape[-1]
- # we add a small number to avoid floating point error in the interpolation
- # see discussion at https://github.com/facebookresearch/dino/issues/8
- # w0, h0 = w0 + 0.1, h0 + 0.1
- # patch_pos_embed = nn.functional.interpolate(
- # patch_pos_embed.reshape([
- # 1, self.patch_embed.num_patches_w,
- # self.patch_embed.num_patches_h, dim
- # ]).transpose((0, 3, 1, 2)),
- # scale_factor=(w0 / self.patch_embed.num_patches_w,
- # h0 / self.patch_embed.num_patches_h),
- # mode='bicubic', )
- patch_pos_embed = nn.functional.interpolate(
- patch_pos_embed.reshape([
- 1, self.patch_embed.num_patches_w,
- self.patch_embed.num_patches_h, dim
- ]).transpose((0, 3, 1, 2)),
- (w0, h0),
- mode='bicubic', )
- assert int(w0) == patch_pos_embed.shape[-2] and int(
- h0) == patch_pos_embed.shape[-1]
- patch_pos_embed = patch_pos_embed.transpose(
- (0, 2, 3, 1)).reshape([1, -1, dim])
- return paddle.concat(
- (class_pos_embed.unsqueeze(0), patch_pos_embed), axis=1)
- def resize_pos_embed(self, pos_embed, old_hw, new_hw):
- """
- Resize pos_embed weight.
- Args:
- pos_embed (Tensor): the pos_embed weight
- old_hw (list[int]): the height and width of old pos_embed
- new_hw (list[int]): the height and width of new pos_embed
- Returns:
- Tensor: the resized pos_embed weight
- """
- cls_pos_embed = pos_embed[:, :1, :]
- pos_embed = pos_embed[:, 1:, :]
- pos_embed = pos_embed.transpose([0, 2, 1])
- pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]])
- pos_embed = F.interpolate(
- pos_embed, new_hw, mode='bicubic', align_corners=False)
- pos_embed = pos_embed.flatten(2).transpose([0, 2, 1])
- pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1)
- return pos_embed
- def build_2d_sincos_position_embedding(
- self,
- embed_dim=768,
- temperature=10000., ):
- h, w = self.patch_embed.patch_shape
- grid_w = paddle.arange(w, dtype=paddle.float32)
- grid_h = paddle.arange(h, dtype=paddle.float32)
- grid_w, grid_h = paddle.meshgrid(grid_w, grid_h)
- assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
- pos_dim = embed_dim // 4
- omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
- omega = 1. / (temperature**omega)
- out_w = grid_w.flatten()[..., None] @omega[None]
- out_h = grid_h.flatten()[..., None] @omega[None]
- pos_emb = paddle.concat(
- [
- paddle.sin(out_w), paddle.cos(out_w), paddle.sin(out_h),
- paddle.cos(out_h)
- ],
- axis=1)[None, :, :]
- pe_token = paddle.zeros([1, 1, embed_dim], dtype=paddle.float32)
- pos_embed = paddle.concat([pe_token, pos_emb], axis=1)
- # pos_embed.stop_gradient = True
- return pos_embed
- def forward(self, x):
- x = x['image'] if isinstance(x, dict) else x
- _, _, h, w = x.shape
- x = self.patch_embed(x)
- B, D, Hp, Wp = x.shape # b * c * h * w
- cls_tokens = self.cls_token.expand(
- (B, self.cls_token.shape[-2], self.cls_token.shape[-1]))
- x = x.flatten(2).transpose([0, 2, 1]) # b * hw * c
- x = paddle.concat([cls_tokens, x], axis=1)
- if self.pos_embed is not None:
- # x = x + self.interpolate_pos_encoding(x, w, h)
- x = x + self.interpolate_pos_encoding(x, h, w)
- x = self.pos_drop(x)
- rel_pos_bias = self.rel_pos_bias(
- ) if self.rel_pos_bias is not None else None
- feats = []
- for idx, blk in enumerate(self.blocks):
- if self.use_checkpoint and self.training:
- x = paddle.distributed.fleet.utils.recompute(
- blk, x, rel_pos_bias, **{"preserve_rng_state": True})
- else:
- x = blk(x, rel_pos_bias)
- if idx in self.out_indices:
- xp = paddle.reshape(
- paddle.transpose(
- self.norm(x[:, 1:, :]), perm=[0, 2, 1]),
- shape=[B, D, Hp, Wp])
- feats.append(xp)
- if self.with_fpn:
- fpns = [self.fpn1, self.fpn2, self.fpn3, self.fpn4][
- -self.num_fpn_levels:]
- assert len(fpns) == len(feats) or len(feats) == 1, ''
- outputs = []
- for i, m in enumerate(fpns):
- outputs.append(
- m(feats[i] if len(feats) == len(fpns) else feats[-1]))
- return outputs
- return feats
- @property
- def num_layers(self):
- return len(self.blocks)
- @property
- def no_weight_decay(self):
- return {'pos_embed', 'cls_token'}
- @property
- def out_shape(self):
- return [
- ShapeSpec(
- channels=c, stride=s)
- for c, s in zip(self.out_channels, self.out_strides)
- ]
|