123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register, serializable
- from ppdet.modeling.layers import ConvNormLayer
- from ..shape_spec import ShapeSpec
- DLA_cfg = {34: ([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512]), }
- class BasicBlock(nn.Layer):
- def __init__(self, ch_in, ch_out, stride=1):
- super(BasicBlock, self).__init__()
- self.conv1 = ConvNormLayer(
- ch_in,
- ch_out,
- filter_size=3,
- stride=stride,
- bias_on=False,
- norm_decay=None)
- self.conv2 = ConvNormLayer(
- ch_out,
- ch_out,
- filter_size=3,
- stride=1,
- bias_on=False,
- norm_decay=None)
- def forward(self, inputs, residual=None):
- if residual is None:
- residual = inputs
- out = self.conv1(inputs)
- out = F.relu(out)
- out = self.conv2(out)
- out = paddle.add(x=out, y=residual)
- out = F.relu(out)
- return out
- class Root(nn.Layer):
- def __init__(self, ch_in, ch_out, kernel_size, residual):
- super(Root, self).__init__()
- self.conv = ConvNormLayer(
- ch_in,
- ch_out,
- filter_size=1,
- stride=1,
- bias_on=False,
- norm_decay=None)
- self.residual = residual
- def forward(self, inputs):
- children = inputs
- out = self.conv(paddle.concat(inputs, axis=1))
- if self.residual:
- out = paddle.add(x=out, y=children[0])
- out = F.relu(out)
- return out
- class Tree(nn.Layer):
- def __init__(self,
- level,
- block,
- ch_in,
- ch_out,
- stride=1,
- level_root=False,
- root_dim=0,
- root_kernel_size=1,
- root_residual=False):
- super(Tree, self).__init__()
- if root_dim == 0:
- root_dim = 2 * ch_out
- if level_root:
- root_dim += ch_in
- if level == 1:
- self.tree1 = block(ch_in, ch_out, stride)
- self.tree2 = block(ch_out, ch_out, 1)
- else:
- self.tree1 = Tree(
- level - 1,
- block,
- ch_in,
- ch_out,
- stride,
- root_dim=0,
- root_kernel_size=root_kernel_size,
- root_residual=root_residual)
- self.tree2 = Tree(
- level - 1,
- block,
- ch_out,
- ch_out,
- 1,
- root_dim=root_dim + ch_out,
- root_kernel_size=root_kernel_size,
- root_residual=root_residual)
- if level == 1:
- self.root = Root(root_dim, ch_out, root_kernel_size, root_residual)
- self.level_root = level_root
- self.root_dim = root_dim
- self.downsample = None
- self.project = None
- self.level = level
- if stride > 1:
- self.downsample = nn.MaxPool2D(stride, stride=stride)
- if ch_in != ch_out:
- self.project = ConvNormLayer(
- ch_in,
- ch_out,
- filter_size=1,
- stride=1,
- bias_on=False,
- norm_decay=None)
- def forward(self, x, residual=None, children=None):
- children = [] if children is None else children
- bottom = self.downsample(x) if self.downsample else x
- residual = self.project(bottom) if self.project else bottom
- if self.level_root:
- children.append(bottom)
- x1 = self.tree1(x, residual)
- if self.level == 1:
- x2 = self.tree2(x1)
- x = self.root([x2, x1] + children)
- else:
- children.append(x1)
- x = self.tree2(x1, children=children)
- return x
- @register
- @serializable
- class DLA(nn.Layer):
- """
- DLA, see https://arxiv.org/pdf/1707.06484.pdf
- Args:
- depth (int): DLA depth, only support 34 now.
- residual_root (bool): whether use a reidual layer in the root block
- pre_img (bool): add pre_img, only used in CenterTrack
- pre_hm (bool): add pre_hm, only used in CenterTrack
- """
- def __init__(self,
- depth=34,
- residual_root=False,
- pre_img=False,
- pre_hm=False):
- super(DLA, self).__init__()
- assert depth == 34, 'Only support DLA with depth of 34 now.'
- if depth == 34:
- block = BasicBlock
- levels, channels = DLA_cfg[depth]
- self.channels = channels
- self.num_levels = len(levels)
- self.base_layer = nn.Sequential(
- ConvNormLayer(
- 3,
- channels[0],
- filter_size=7,
- stride=1,
- bias_on=False,
- norm_decay=None),
- nn.ReLU())
- self.level0 = self._make_conv_level(channels[0], channels[0], levels[0])
- self.level1 = self._make_conv_level(
- channels[0], channels[1], levels[1], stride=2)
- self.level2 = Tree(
- levels[2],
- block,
- channels[1],
- channels[2],
- 2,
- level_root=False,
- root_residual=residual_root)
- self.level3 = Tree(
- levels[3],
- block,
- channels[2],
- channels[3],
- 2,
- level_root=True,
- root_residual=residual_root)
- self.level4 = Tree(
- levels[4],
- block,
- channels[3],
- channels[4],
- 2,
- level_root=True,
- root_residual=residual_root)
- self.level5 = Tree(
- levels[5],
- block,
- channels[4],
- channels[5],
- 2,
- level_root=True,
- root_residual=residual_root)
- if pre_img:
- self.pre_img_layer = nn.Sequential(
- ConvNormLayer(
- 3,
- channels[0],
- filter_size=7,
- stride=1,
- bias_on=False,
- norm_decay=None),
- nn.ReLU())
- if pre_hm:
- self.pre_hm_layer = nn.Sequential(
- ConvNormLayer(
- 1,
- channels[0],
- filter_size=7,
- stride=1,
- bias_on=False,
- norm_decay=None),
- nn.ReLU())
- self.pre_img = pre_img
- self.pre_hm = pre_hm
- def _make_conv_level(self, ch_in, ch_out, conv_num, stride=1):
- modules = []
- for i in range(conv_num):
- modules.extend([
- ConvNormLayer(
- ch_in,
- ch_out,
- filter_size=3,
- stride=stride if i == 0 else 1,
- bias_on=False,
- norm_decay=None), nn.ReLU()
- ])
- ch_in = ch_out
- return nn.Sequential(*modules)
- @property
- def out_shape(self):
- return [
- ShapeSpec(channels=self.channels[i]) for i in range(self.num_levels)
- ]
- def forward(self, inputs):
- outs = []
- feats = self.base_layer(inputs['image'])
- if self.pre_img and 'pre_image' in inputs and inputs[
- 'pre_image'] is not None:
- feats = feats + self.pre_img_layer(inputs['pre_image'])
- if self.pre_hm and 'pre_hm' in inputs and inputs['pre_hm'] is not None:
- feats = feats + self.pre_hm_layer(inputs['pre_hm'])
- for i in range(self.num_levels):
- feats = getattr(self, 'level{}'.format(i))(feats)
- outs.append(feats)
- return outs
|