123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- '''
- Modified from https://github.com/facebookresearch/ConvNeXt
- Copyright (c) Meta Platforms, Inc. and affiliates.
- All rights reserved.
- This source code is licensed under the license found in the
- LICENSE file in the root directory of this source tree.
- '''
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- from paddle.nn.initializer import Constant
- import numpy as np
- from ppdet.core.workspace import register, serializable
- from ..shape_spec import ShapeSpec
- from .transformer_utils import DropPath, trunc_normal_, zeros_
- __all__ = ['ConvNeXt']
- class Block(nn.Layer):
- r""" ConvNeXt Block. There are two equivalent implementations:
- (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
- (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
- We use (2) as we find it slightly faster in Pypaddle
-
- Args:
- dim (int): Number of input channels.
- drop_path (float): Stochastic depth rate. Default: 0.0
- layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
- """
- def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
- super().__init__()
- self.dwconv = nn.Conv2D(
- dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
- self.norm = LayerNorm(dim, eps=1e-6)
- self.pwconv1 = nn.Linear(
- dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
- self.act = nn.GELU()
- self.pwconv2 = nn.Linear(4 * dim, dim)
- if layer_scale_init_value > 0:
- self.gamma = self.create_parameter(
- shape=(dim, ),
- attr=ParamAttr(initializer=Constant(layer_scale_init_value)))
- else:
- self.gamma = None
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity(
- )
- def forward(self, x):
- input = x
- x = self.dwconv(x)
- x = x.transpose([0, 2, 3, 1])
- x = self.norm(x)
- x = self.pwconv1(x)
- x = self.act(x)
- x = self.pwconv2(x)
- if self.gamma is not None:
- x = self.gamma * x
- x = x.transpose([0, 3, 1, 2])
- x = input + self.drop_path(x)
- return x
- class LayerNorm(nn.Layer):
- r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
- The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
- shape (batch_size, height, width, channels) while channels_first corresponds to inputs
- with shape (batch_size, channels, height, width).
- """
- def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
- super().__init__()
- self.weight = self.create_parameter(
- shape=(normalized_shape, ),
- attr=ParamAttr(initializer=Constant(1.)))
- self.bias = self.create_parameter(
- shape=(normalized_shape, ),
- attr=ParamAttr(initializer=Constant(0.)))
- self.eps = eps
- self.data_format = data_format
- if self.data_format not in ["channels_last", "channels_first"]:
- raise NotImplementedError
- self.normalized_shape = (normalized_shape, )
- def forward(self, x):
- if self.data_format == "channels_last":
- return F.layer_norm(x, self.normalized_shape, self.weight,
- self.bias, self.eps)
- elif self.data_format == "channels_first":
- u = x.mean(1, keepdim=True)
- s = (x - u).pow(2).mean(1, keepdim=True)
- x = (x - u) / paddle.sqrt(s + self.eps)
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
- return x
- @register
- @serializable
- class ConvNeXt(nn.Layer):
- r""" ConvNeXt
- A Pypaddle impl of : `A ConvNet for the 2020s` -
- https://arxiv.org/pdf/2201.03545.pdf
- Args:
- in_chans (int): Number of input image channels. Default: 3
- depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
- dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
- drop_path_rate (float): Stochastic depth rate. Default: 0.
- layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
- """
- arch_settings = {
- 'tiny': {
- 'depths': [3, 3, 9, 3],
- 'dims': [96, 192, 384, 768]
- },
- 'small': {
- 'depths': [3, 3, 27, 3],
- 'dims': [96, 192, 384, 768]
- },
- 'base': {
- 'depths': [3, 3, 27, 3],
- 'dims': [128, 256, 512, 1024]
- },
- 'large': {
- 'depths': [3, 3, 27, 3],
- 'dims': [192, 384, 768, 1536]
- },
- 'xlarge': {
- 'depths': [3, 3, 27, 3],
- 'dims': [256, 512, 1024, 2048]
- },
- }
- def __init__(
- self,
- arch='tiny',
- in_chans=3,
- drop_path_rate=0.,
- layer_scale_init_value=1e-6,
- return_idx=[1, 2, 3],
- norm_output=True,
- pretrained=None, ):
- super().__init__()
- depths = self.arch_settings[arch]['depths']
- dims = self.arch_settings[arch]['dims']
- self.downsample_layers = nn.LayerList(
- ) # stem and 3 intermediate downsampling conv layers
- stem = nn.Sequential(
- nn.Conv2D(
- in_chans, dims[0], kernel_size=4, stride=4),
- LayerNorm(
- dims[0], eps=1e-6, data_format="channels_first"))
- self.downsample_layers.append(stem)
- for i in range(3):
- downsample_layer = nn.Sequential(
- LayerNorm(
- dims[i], eps=1e-6, data_format="channels_first"),
- nn.Conv2D(
- dims[i], dims[i + 1], kernel_size=2, stride=2), )
- self.downsample_layers.append(downsample_layer)
- self.stages = nn.LayerList(
- ) # 4 feature resolution stages, each consisting of multiple residual blocks
- dp_rates = [x for x in np.linspace(0, drop_path_rate, sum(depths))]
- cur = 0
- for i in range(4):
- stage = nn.Sequential(* [
- Block(
- dim=dims[i],
- drop_path=dp_rates[cur + j],
- layer_scale_init_value=layer_scale_init_value)
- for j in range(depths[i])
- ])
- self.stages.append(stage)
- cur += depths[i]
- self.return_idx = return_idx
- self.dims = [dims[i] for i in return_idx] # [::-1]
- self.norm_output = norm_output
- if norm_output:
- self.norms = nn.LayerList([
- LayerNorm(
- c, eps=1e-6, data_format="channels_first")
- for c in self.dims
- ])
- self.apply(self._init_weights)
- if pretrained is not None:
- if 'http' in pretrained: #URL
- path = paddle.utils.download.get_weights_path_from_url(
- pretrained)
- else: #model in local path
- path = pretrained
- self.set_state_dict(paddle.load(path))
- def _init_weights(self, m):
- if isinstance(m, (nn.Conv2D, nn.Linear)):
- trunc_normal_(m.weight)
- zeros_(m.bias)
- def forward_features(self, x):
- output = []
- for i in range(4):
- x = self.downsample_layers[i](x)
- x = self.stages[i](x)
- output.append(x)
- outputs = [output[i] for i in self.return_idx]
- if self.norm_output:
- outputs = [self.norms[i](out) for i, out in enumerate(outputs)]
- return outputs
- def forward(self, x):
- x = self.forward_features(x['image'])
- return x
- @property
- def out_shape(self):
- return [ShapeSpec(channels=c) for c in self.dims]
|