123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn.functional as F
- __all__ = [
- 'pad_gt', 'gather_topk_anchors', 'check_points_inside_bboxes',
- 'compute_max_iou_anchor', 'compute_max_iou_gt',
- 'generate_anchors_for_grid_cell'
- ]
- def pad_gt(gt_labels, gt_bboxes, gt_scores=None):
- r""" Pad 0 in gt_labels and gt_bboxes.
- Args:
- gt_labels (Tensor|List[Tensor], int64): Label of gt_bboxes,
- shape is [B, n, 1] or [[n_1, 1], [n_2, 1], ...], here n = sum(n_i)
- gt_bboxes (Tensor|List[Tensor], float32): Ground truth bboxes,
- shape is [B, n, 4] or [[n_1, 4], [n_2, 4], ...], here n = sum(n_i)
- gt_scores (Tensor|List[Tensor]|None, float32): Score of gt_bboxes,
- shape is [B, n, 1] or [[n_1, 4], [n_2, 4], ...], here n = sum(n_i)
- Returns:
- pad_gt_labels (Tensor, int64): shape[B, n, 1]
- pad_gt_bboxes (Tensor, float32): shape[B, n, 4]
- pad_gt_scores (Tensor, float32): shape[B, n, 1]
- pad_gt_mask (Tensor, float32): shape[B, n, 1], 1 means bbox, 0 means no bbox
- """
- if isinstance(gt_labels, paddle.Tensor) and isinstance(gt_bboxes,
- paddle.Tensor):
- assert gt_labels.ndim == gt_bboxes.ndim and \
- gt_bboxes.ndim == 3
- pad_gt_mask = (
- gt_bboxes.sum(axis=-1, keepdim=True) > 0).astype(gt_bboxes.dtype)
- if gt_scores is None:
- gt_scores = pad_gt_mask.clone()
- assert gt_labels.ndim == gt_scores.ndim
- return gt_labels, gt_bboxes, gt_scores, pad_gt_mask
- elif isinstance(gt_labels, list) and isinstance(gt_bboxes, list):
- assert len(gt_labels) == len(gt_bboxes), \
- 'The number of `gt_labels` and `gt_bboxes` is not equal. '
- num_max_boxes = max([len(a) for a in gt_bboxes])
- batch_size = len(gt_bboxes)
- # pad label and bbox
- pad_gt_labels = paddle.zeros(
- [batch_size, num_max_boxes, 1], dtype=gt_labels[0].dtype)
- pad_gt_bboxes = paddle.zeros(
- [batch_size, num_max_boxes, 4], dtype=gt_bboxes[0].dtype)
- pad_gt_scores = paddle.zeros(
- [batch_size, num_max_boxes, 1], dtype=gt_bboxes[0].dtype)
- pad_gt_mask = paddle.zeros(
- [batch_size, num_max_boxes, 1], dtype=gt_bboxes[0].dtype)
- for i, (label, bbox) in enumerate(zip(gt_labels, gt_bboxes)):
- if len(label) > 0 and len(bbox) > 0:
- pad_gt_labels[i, :len(label)] = label
- pad_gt_bboxes[i, :len(bbox)] = bbox
- pad_gt_mask[i, :len(bbox)] = 1.
- if gt_scores is not None:
- pad_gt_scores[i, :len(gt_scores[i])] = gt_scores[i]
- if gt_scores is None:
- pad_gt_scores = pad_gt_mask.clone()
- return pad_gt_labels, pad_gt_bboxes, pad_gt_scores, pad_gt_mask
- else:
- raise ValueError('The input `gt_labels` or `gt_bboxes` is invalid! ')
- def gather_topk_anchors(metrics, topk, largest=True, topk_mask=None, eps=1e-9):
- r"""
- Args:
- metrics (Tensor, float32): shape[B, n, L], n: num_gts, L: num_anchors
- topk (int): The number of top elements to look for along the axis.
- largest (bool) : largest is a flag, if set to true,
- algorithm will sort by descending order, otherwise sort by
- ascending order. Default: True
- topk_mask (Tensor, float32): shape[B, n, 1], ignore bbox mask,
- Default: None
- eps (float): Default: 1e-9
- Returns:
- is_in_topk (Tensor, float32): shape[B, n, L], value=1. means selected
- """
- num_anchors = metrics.shape[-1]
- topk_metrics, topk_idxs = paddle.topk(
- metrics, topk, axis=-1, largest=largest)
- if topk_mask is None:
- topk_mask = (
- topk_metrics.max(axis=-1, keepdim=True) > eps).astype(metrics.dtype)
- is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(
- axis=-2).astype(metrics.dtype)
- return is_in_topk * topk_mask
- def check_points_inside_bboxes(points,
- bboxes,
- center_radius_tensor=None,
- eps=1e-9,
- sm_use=False):
- r"""
- Args:
- points (Tensor, float32): shape[L, 2], "xy" format, L: num_anchors
- bboxes (Tensor, float32): shape[B, n, 4], "xmin, ymin, xmax, ymax" format
- center_radius_tensor (Tensor, float32): shape [L, 1]. Default: None.
- eps (float): Default: 1e-9
- Returns:
- is_in_bboxes (Tensor, float32): shape[B, n, L], value=1. means selected
- """
- points = points.unsqueeze([0, 1])
- x, y = points.chunk(2, axis=-1)
- xmin, ymin, xmax, ymax = bboxes.unsqueeze(2).chunk(4, axis=-1)
- # check whether `points` is in `bboxes`
- l = x - xmin
- t = y - ymin
- r = xmax - x
- b = ymax - y
- delta_ltrb = paddle.concat([l, t, r, b], axis=-1)
- is_in_bboxes = (delta_ltrb.min(axis=-1) > eps)
- if center_radius_tensor is not None:
- # check whether `points` is in `center_radius`
- center_radius_tensor = center_radius_tensor.unsqueeze([0, 1])
- cx = (xmin + xmax) * 0.5
- cy = (ymin + ymax) * 0.5
- l = x - (cx - center_radius_tensor)
- t = y - (cy - center_radius_tensor)
- r = (cx + center_radius_tensor) - x
- b = (cy + center_radius_tensor) - y
- delta_ltrb_c = paddle.concat([l, t, r, b], axis=-1)
- is_in_center = (delta_ltrb_c.min(axis=-1) > eps)
- if sm_use:
- return is_in_bboxes.astype(bboxes.dtype), is_in_center.astype(
- bboxes.dtype)
- else:
- return (paddle.logical_and(is_in_bboxes, is_in_center),
- paddle.logical_or(is_in_bboxes, is_in_center))
- return is_in_bboxes.astype(bboxes.dtype)
- def compute_max_iou_anchor(ious):
- r"""
- For each anchor, find the GT with the largest IOU.
- Args:
- ious (Tensor, float32): shape[B, n, L], n: num_gts, L: num_anchors
- Returns:
- is_max_iou (Tensor, float32): shape[B, n, L], value=1. means selected
- """
- num_max_boxes = ious.shape[-2]
- max_iou_index = ious.argmax(axis=-2)
- is_max_iou = F.one_hot(max_iou_index, num_max_boxes).transpose([0, 2, 1])
- return is_max_iou.astype(ious.dtype)
- def compute_max_iou_gt(ious):
- r"""
- For each GT, find the anchor with the largest IOU.
- Args:
- ious (Tensor, float32): shape[B, n, L], n: num_gts, L: num_anchors
- Returns:
- is_max_iou (Tensor, float32): shape[B, n, L], value=1. means selected
- """
- num_anchors = ious.shape[-1]
- max_iou_index = ious.argmax(axis=-1)
- is_max_iou = F.one_hot(max_iou_index, num_anchors)
- return is_max_iou.astype(ious.dtype)
- def generate_anchors_for_grid_cell(feats,
- fpn_strides,
- grid_cell_size=5.0,
- grid_cell_offset=0.5,
- dtype='float32'):
- r"""
- Like ATSS, generate anchors based on grid size.
- Args:
- feats (List[Tensor]): shape[s, (b, c, h, w)]
- fpn_strides (tuple|list): shape[s], stride for each scale feature
- grid_cell_size (float): anchor size
- grid_cell_offset (float): The range is between 0 and 1.
- Returns:
- anchors (Tensor): shape[l, 4], "xmin, ymin, xmax, ymax" format.
- anchor_points (Tensor): shape[l, 2], "x, y" format.
- num_anchors_list (List[int]): shape[s], contains [s_1, s_2, ...].
- stride_tensor (Tensor): shape[l, 1], contains the stride for each scale.
- """
- assert len(feats) == len(fpn_strides)
- anchors = []
- anchor_points = []
- num_anchors_list = []
- stride_tensor = []
- for feat, stride in zip(feats, fpn_strides):
- _, _, h, w = feat.shape
- cell_half_size = grid_cell_size * stride * 0.5
- shift_x = (paddle.arange(end=w) + grid_cell_offset) * stride
- shift_y = (paddle.arange(end=h) + grid_cell_offset) * stride
- shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
- anchor = paddle.stack(
- [
- shift_x - cell_half_size, shift_y - cell_half_size,
- shift_x + cell_half_size, shift_y + cell_half_size
- ],
- axis=-1).astype(dtype)
- anchor_point = paddle.stack([shift_x, shift_y], axis=-1).astype(dtype)
- anchors.append(anchor.reshape([-1, 4]))
- anchor_points.append(anchor_point.reshape([-1, 2]))
- num_anchors_list.append(len(anchors[-1]))
- stride_tensor.append(
- paddle.full(
- [num_anchors_list[-1], 1], stride, dtype=dtype))
- anchors = paddle.concat(anchors)
- anchors.stop_gradient = True
- anchor_points = paddle.concat(anchor_points)
- anchor_points.stop_gradient = True
- stride_tensor = paddle.concat(stride_tensor)
- stride_tensor.stop_gradient = True
- return anchors, anchor_points, num_anchors_list, stride_tensor
|