123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register
- from ..bbox_utils import iou_similarity, batch_iou_similarity
- from ..bbox_utils import bbox_center
- from .utils import (check_points_inside_bboxes, compute_max_iou_anchor,
- compute_max_iou_gt)
- __all__ = ['ATSSAssigner']
- @register
- class ATSSAssigner(nn.Layer):
- """Bridging the Gap Between Anchor-based and Anchor-free Detection
- via Adaptive Training Sample Selection
- """
- __shared__ = ['num_classes']
- def __init__(self,
- topk=9,
- num_classes=80,
- force_gt_matching=False,
- eps=1e-9,
- sm_use=False):
- super(ATSSAssigner, self).__init__()
- self.topk = topk
- self.num_classes = num_classes
- self.force_gt_matching = force_gt_matching
- self.eps = eps
- self.sm_use = sm_use
- def _gather_topk_pyramid(self, gt2anchor_distances, num_anchors_list,
- pad_gt_mask):
- gt2anchor_distances_list = paddle.split(
- gt2anchor_distances, num_anchors_list, axis=-1)
- num_anchors_index = np.cumsum(num_anchors_list).tolist()
- num_anchors_index = [0, ] + num_anchors_index[:-1]
- is_in_topk_list = []
- topk_idxs_list = []
- for distances, anchors_index in zip(gt2anchor_distances_list,
- num_anchors_index):
- num_anchors = distances.shape[-1]
- _, topk_idxs = paddle.topk(
- distances, self.topk, axis=-1, largest=False)
- topk_idxs_list.append(topk_idxs + anchors_index)
- is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(
- axis=-2).astype(gt2anchor_distances.dtype)
- is_in_topk_list.append(is_in_topk * pad_gt_mask)
- is_in_topk_list = paddle.concat(is_in_topk_list, axis=-1)
- topk_idxs_list = paddle.concat(topk_idxs_list, axis=-1)
- return is_in_topk_list, topk_idxs_list
- @paddle.no_grad()
- def forward(self,
- anchor_bboxes,
- num_anchors_list,
- gt_labels,
- gt_bboxes,
- pad_gt_mask,
- bg_index,
- gt_scores=None,
- pred_bboxes=None):
- r"""This code is based on
- https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/atss_assigner.py
- The assignment is done in following steps
- 1. compute iou between all bbox (bbox of all pyramid levels) and gt
- 2. compute center distance between all bbox and gt
- 3. on each pyramid level, for each gt, select k bbox whose center
- are closest to the gt center, so we total select k*l bbox as
- candidates for each gt
- 4. get corresponding iou for the these candidates, and compute the
- mean and std, set mean + std as the iou threshold
- 5. select these candidates whose iou are greater than or equal to
- the threshold as positive
- 6. limit the positive sample's center in gt
- 7. if an anchor box is assigned to multiple gts, the one with the
- highest iou will be selected.
- Args:
- anchor_bboxes (Tensor, float32): pre-defined anchors, shape(L, 4),
- "xmin, xmax, ymin, ymax" format
- num_anchors_list (List): num of anchors in each level
- gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
- gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
- pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
- bg_index (int): background index
- gt_scores (Tensor|None, float32) Score of gt_bboxes,
- shape(B, n, 1), if None, then it will initialize with one_hot label
- pred_bboxes (Tensor, float32, optional): predicted bounding boxes, shape(B, L, 4)
- Returns:
- assigned_labels (Tensor): (B, L)
- assigned_bboxes (Tensor): (B, L, 4)
- assigned_scores (Tensor): (B, L, C), if pred_bboxes is not None, then output ious
- """
- assert gt_labels.ndim == gt_bboxes.ndim and \
- gt_bboxes.ndim == 3
- num_anchors, _ = anchor_bboxes.shape
- batch_size, num_max_boxes, _ = gt_bboxes.shape
- # negative batch
- if num_max_boxes == 0:
- assigned_labels = paddle.full(
- [batch_size, num_anchors], bg_index, dtype='int32')
- assigned_bboxes = paddle.zeros([batch_size, num_anchors, 4])
- assigned_scores = paddle.zeros(
- [batch_size, num_anchors, self.num_classes])
- return assigned_labels, assigned_bboxes, assigned_scores
- # 1. compute iou between gt and anchor bbox, [B, n, L]
- ious = iou_similarity(gt_bboxes.reshape([-1, 4]), anchor_bboxes)
- ious = ious.reshape([batch_size, -1, num_anchors])
- # 2. compute center distance between all anchors and gt, [B, n, L]
- gt_centers = bbox_center(gt_bboxes.reshape([-1, 4])).unsqueeze(1)
- anchor_centers = bbox_center(anchor_bboxes)
- gt2anchor_distances = (gt_centers - anchor_centers.unsqueeze(0)) \
- .norm(2, axis=-1).reshape([batch_size, -1, num_anchors])
- # 3. on each pyramid level, selecting topk closest candidates
- # based on the center distance, [B, n, L]
- is_in_topk, topk_idxs = self._gather_topk_pyramid(
- gt2anchor_distances, num_anchors_list, pad_gt_mask)
- # 4. get corresponding iou for the these candidates, and compute the
- # mean and std, 5. set mean + std as the iou threshold
- iou_candidates = ious * is_in_topk
- iou_threshold = paddle.index_sample(
- iou_candidates.flatten(stop_axis=-2),
- topk_idxs.flatten(stop_axis=-2))
- iou_threshold = iou_threshold.reshape([batch_size, num_max_boxes, -1])
- iou_threshold = iou_threshold.mean(axis=-1, keepdim=True) + \
- iou_threshold.std(axis=-1, keepdim=True)
- is_in_topk = paddle.where(iou_candidates > iou_threshold, is_in_topk,
- paddle.zeros_like(is_in_topk))
- # 6. check the positive sample's center in gt, [B, n, L]
- if self.sm_use:
- is_in_gts = check_points_inside_bboxes(
- anchor_centers, gt_bboxes, sm_use=True)
- else:
- is_in_gts = check_points_inside_bboxes(anchor_centers, gt_bboxes)
- # select positive sample, [B, n, L]
- mask_positive = is_in_topk * is_in_gts * pad_gt_mask
- # 7. if an anchor box is assigned to multiple gts,
- # the one with the highest iou will be selected.
- mask_positive_sum = mask_positive.sum(axis=-2)
- if mask_positive_sum.max() > 1:
- mask_multiple_gts = (mask_positive_sum.unsqueeze(1) > 1).tile(
- [1, num_max_boxes, 1])
- if self.sm_use:
- is_max_iou = compute_max_iou_anchor(ious * mask_positive)
- else:
- is_max_iou = compute_max_iou_anchor(ious)
- mask_positive = paddle.where(mask_multiple_gts, is_max_iou,
- mask_positive)
- mask_positive_sum = mask_positive.sum(axis=-2)
- # 8. make sure every gt_bbox matches the anchor
- if self.force_gt_matching:
- is_max_iou = compute_max_iou_gt(ious) * pad_gt_mask
- mask_max_iou = (is_max_iou.sum(-2, keepdim=True) == 1).tile(
- [1, num_max_boxes, 1])
- mask_positive = paddle.where(mask_max_iou, is_max_iou,
- mask_positive)
- mask_positive_sum = mask_positive.sum(axis=-2)
- assigned_gt_index = mask_positive.argmax(axis=-2)
- # assigned target
- batch_ind = paddle.arange(
- end=batch_size, dtype=gt_labels.dtype).unsqueeze(-1)
- assigned_gt_index = assigned_gt_index + batch_ind * num_max_boxes
- assigned_labels = paddle.gather(
- gt_labels.flatten(), assigned_gt_index.flatten(), axis=0)
- assigned_labels = assigned_labels.reshape([batch_size, num_anchors])
- assigned_labels = paddle.where(
- mask_positive_sum > 0, assigned_labels,
- paddle.full_like(assigned_labels, bg_index))
- assigned_bboxes = paddle.gather(
- gt_bboxes.reshape([-1, 4]), assigned_gt_index.flatten(), axis=0)
- assigned_bboxes = assigned_bboxes.reshape([batch_size, num_anchors, 4])
- assigned_scores = F.one_hot(assigned_labels, self.num_classes + 1)
- ind = list(range(self.num_classes + 1))
- ind.remove(bg_index)
- assigned_scores = paddle.index_select(
- assigned_scores, paddle.to_tensor(ind), axis=-1)
- if pred_bboxes is not None:
- # assigned iou
- ious = batch_iou_similarity(gt_bboxes, pred_bboxes) * mask_positive
- ious = ious.max(axis=-2).unsqueeze(-1)
- assigned_scores *= ious
- elif gt_scores is not None:
- gather_scores = paddle.gather(
- gt_scores.flatten(), assigned_gt_index.flatten(), axis=0)
- gather_scores = gather_scores.reshape([batch_size, num_anchors])
- gather_scores = paddle.where(mask_positive_sum > 0, gather_scores,
- paddle.zeros_like(gather_scores))
- assigned_scores *= gather_scores.unsqueeze(-1)
- return assigned_labels, assigned_bboxes, assigned_scores
|