12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['YOLOF']
- @register
- class YOLOF(BaseArch):
- __category__ = 'architecture'
- def __init__(self,
- backbone='ResNet',
- neck='DilatedEncoder',
- head='YOLOFHead',
- for_mot=False):
- """
- YOLOF network, see https://arxiv.org/abs/2103.09460
- Args:
- backbone (nn.Layer): backbone instance
- neck (nn.Layer): DilatedEncoder instance
- head (nn.Layer): YOLOFHead instance
- for_mot (bool): whether return other features for multi-object tracking
- models, default False in pure object detection models.
- """
- super(YOLOF, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.head = head
- self.for_mot = for_mot
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- # fpn
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- # head
- kwargs = {'input_shape': neck.out_shape}
- head = create(cfg['head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "head": head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- neck_feats = self.neck(body_feats, self.for_mot)
- if self.training:
- yolo_losses = self.head(neck_feats, self.inputs)
- return yolo_losses
- else:
- yolo_head_outs = self.head(neck_feats)
- bbox, bbox_num = self.head.post_process(yolo_head_outs,
- self.inputs['im_shape'],
- self.inputs['scale_factor'])
- output = {'bbox': bbox, 'bbox_num': bbox_num}
- return output
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- return self._forward()
|