123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import copy
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- __all__ = ['PPYOLOE', 'PPYOLOEWithAuxHead']
- # PP-YOLOE and PP-YOLOE+ are recommended to use this architecture
- # PP-YOLOE and PP-YOLOE+ can also use the same architecture of YOLOv3 in yolo.py
- @register
- class PPYOLOE(BaseArch):
- __category__ = 'architecture'
- __inject__ = ['post_process']
- def __init__(self,
- backbone='CSPResNet',
- neck='CustomCSPPAN',
- yolo_head='PPYOLOEHead',
- post_process='BBoxPostProcess',
- for_mot=False):
- """
- PPYOLOE network, see https://arxiv.org/abs/2203.16250
- Args:
- backbone (nn.Layer): backbone instance
- neck (nn.Layer): neck instance
- yolo_head (nn.Layer): anchor_head instance
- post_process (object): `BBoxPostProcess` instance
- for_mot (bool): whether return other features for multi-object tracking
- models, default False in pure object detection models.
- """
- super(PPYOLOE, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.yolo_head = yolo_head
- self.post_process = post_process
- self.for_mot = for_mot
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- # fpn
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- # head
- kwargs = {'input_shape': neck.out_shape}
- yolo_head = create(cfg['yolo_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "yolo_head": yolo_head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- neck_feats = self.neck(body_feats, self.for_mot)
- if self.training:
- yolo_losses = self.yolo_head(neck_feats, self.inputs)
- return yolo_losses
- else:
- yolo_head_outs = self.yolo_head(neck_feats)
- if self.post_process is not None:
- bbox, bbox_num = self.post_process(
- yolo_head_outs, self.yolo_head.mask_anchors,
- self.inputs['im_shape'], self.inputs['scale_factor'])
- else:
- bbox, bbox_num = self.yolo_head.post_process(
- yolo_head_outs, self.inputs['scale_factor'])
- output = {'bbox': bbox, 'bbox_num': bbox_num}
- return output
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- return self._forward()
- @register
- class PPYOLOEWithAuxHead(BaseArch):
- __category__ = 'architecture'
- __inject__ = ['post_process']
- def __init__(self,
- backbone='CSPResNet',
- neck='CustomCSPPAN',
- yolo_head='PPYOLOEHead',
- aux_head='SimpleConvHead',
- post_process='BBoxPostProcess',
- for_mot=False,
- detach_epoch=5):
- """
- PPYOLOE network, see https://arxiv.org/abs/2203.16250
- Args:
- backbone (nn.Layer): backbone instance
- neck (nn.Layer): neck instance
- yolo_head (nn.Layer): anchor_head instance
- post_process (object): `BBoxPostProcess` instance
- for_mot (bool): whether return other features for multi-object tracking
- models, default False in pure object detection models.
- """
- super(PPYOLOEWithAuxHead, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.aux_neck = copy.deepcopy(self.neck)
- self.yolo_head = yolo_head
- self.aux_head = aux_head
- self.post_process = post_process
- self.for_mot = for_mot
- self.detach_epoch = detach_epoch
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- # fpn
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- aux_neck = copy.deepcopy(neck)
- # head
- kwargs = {'input_shape': neck.out_shape}
- yolo_head = create(cfg['yolo_head'], **kwargs)
- aux_head = create(cfg['aux_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "yolo_head": yolo_head,
- 'aux_head': aux_head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- neck_feats = self.neck(body_feats, self.for_mot)
- if self.training:
- if self.inputs['epoch_id'] >= self.detach_epoch:
- aux_neck_feats = self.aux_neck([f.detach() for f in body_feats])
- dual_neck_feats = (paddle.concat(
- [f.detach(), aux_f], axis=1) for f, aux_f in
- zip(neck_feats, aux_neck_feats))
- else:
- aux_neck_feats = self.aux_neck(body_feats)
- dual_neck_feats = (paddle.concat(
- [f, aux_f], axis=1) for f, aux_f in
- zip(neck_feats, aux_neck_feats))
- aux_cls_scores, aux_bbox_preds = self.aux_head(dual_neck_feats)
- loss = self.yolo_head(
- neck_feats,
- self.inputs,
- aux_pred=[aux_cls_scores, aux_bbox_preds])
- return loss
- else:
- yolo_head_outs = self.yolo_head(neck_feats)
- if self.post_process is not None:
- bbox, bbox_num = self.post_process(
- yolo_head_outs, self.yolo_head.mask_anchors,
- self.inputs['im_shape'], self.inputs['scale_factor'])
- else:
- bbox, bbox_num = self.yolo_head.post_process(
- yolo_head_outs, self.inputs['scale_factor'])
- output = {'bbox': bbox, 'bbox_num': bbox_num}
- return output
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- return self._forward()
|