123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- from .. import layers as L
- __all__ = ['METRO_Body']
- def orthographic_projection(X, camera):
- """Perform orthographic projection of 3D points X using the camera parameters
- Args:
- X: size = [B, N, 3]
- camera: size = [B, 3]
- Returns:
- Projected 2D points -- size = [B, N, 2]
- """
- camera = camera.reshape((-1, 1, 3))
- X_trans = X[:, :, :2] + camera[:, :, 1:]
- shape = paddle.shape(X_trans)
- X_2d = (camera[:, :, 0] * X_trans.reshape((shape[0], -1))).reshape(shape)
- return X_2d
- @register
- class METRO_Body(BaseArch):
- __category__ = 'architecture'
- __inject__ = ['loss']
- def __init__(
- self,
- num_joints,
- backbone='HRNet',
- trans_encoder='',
- loss='Pose3DLoss', ):
- """
- METRO network, see https://arxiv.org/abs/
- Args:
- backbone (nn.Layer): backbone instance
- """
- super(METRO_Body, self).__init__()
- self.num_joints = num_joints
- self.backbone = backbone
- self.loss = loss
- self.deploy = False
- self.trans_encoder = trans_encoder
- self.conv_learn_tokens = paddle.nn.Conv1D(49, 10 + num_joints, 1)
- self.cam_param_fc = paddle.nn.Linear(3, 1)
- self.cam_param_fc2 = paddle.nn.Linear(10, 250)
- self.cam_param_fc3 = paddle.nn.Linear(250, 3)
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- trans_encoder = create(cfg['trans_encoder'])
- return {'backbone': backbone, 'trans_encoder': trans_encoder}
- def _forward(self):
- batch_size = self.inputs['image'].shape[0]
- image_feat = self.backbone(self.inputs)
- image_feat_flatten = image_feat.reshape((batch_size, 2048, 49))
- image_feat_flatten = image_feat_flatten.transpose(perm=(0, 2, 1))
- # and apply a conv layer to learn image token for each 3d joint/vertex position
- features = self.conv_learn_tokens(image_feat_flatten)
- if self.training:
- # apply mask vertex/joint modeling
- # meta_masks is a tensor of all the masks, randomly generated in dataloader
- # we pre-define a [MASK] token, which is a floating-value vector with 0.01s
- meta_masks = self.inputs['mjm_mask'].expand((-1, -1, 2048))
- constant_tensor = paddle.ones_like(features) * 0.01
- features = features * meta_masks + constant_tensor * (1 - meta_masks
- )
- pred_out = self.trans_encoder(features)
- pred_3d_joints = pred_out[:, :self.num_joints, :]
- cam_features = pred_out[:, self.num_joints:, :]
- # learn camera parameters
- x = self.cam_param_fc(cam_features)
- x = x.transpose(perm=(0, 2, 1))
- x = self.cam_param_fc2(x)
- x = self.cam_param_fc3(x)
- cam_param = x.transpose(perm=(0, 2, 1))
- pred_camera = cam_param.squeeze()
- pred_2d_joints = orthographic_projection(pred_3d_joints, pred_camera)
- return pred_3d_joints, pred_2d_joints
- def get_loss(self):
- preds_3d, preds_2d = self._forward()
- loss = self.loss(preds_3d, preds_2d, self.inputs)
- output = {'loss': loss}
- return output
- def get_pred(self):
- preds_3d, preds_2d = self._forward()
- outputs = {'pose3d': preds_3d, 'pose2d': preds_2d}
- return outputs
|