123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- import paddle.nn.functional as F
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- from ..ssod_utils import permute_to_N_HWA_K, QFLv2
- from ..losses import GIoULoss
- __all__ = ['FCOS']
- @register
- class FCOS(BaseArch):
- """
- FCOS network, see https://arxiv.org/abs/1904.01355
- Args:
- backbone (object): backbone instance
- neck (object): 'FPN' instance
- fcos_head (object): 'FCOSHead' instance
- """
- __category__ = 'architecture'
- def __init__(self, backbone, neck='FPN', fcos_head='FCOSHead'):
- super(FCOS, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.fcos_head = fcos_head
- self.is_teacher = False
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- backbone = create(cfg['backbone'])
- kwargs = {'input_shape': backbone.out_shape}
- neck = create(cfg['neck'], **kwargs)
- kwargs = {'input_shape': neck.out_shape}
- fcos_head = create(cfg['fcos_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "fcos_head": fcos_head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- fpn_feats = self.neck(body_feats)
- self.is_teacher = self.inputs.get('is_teacher', False)
- if self.training or self.is_teacher:
- losses = self.fcos_head(fpn_feats, self.inputs)
- return losses
- else:
- fcos_head_outs = self.fcos_head(fpn_feats)
- bbox_pred, bbox_num = self.fcos_head.post_process(
- fcos_head_outs, self.inputs['scale_factor'])
- return {'bbox': bbox_pred, 'bbox_num': bbox_num}
- def get_loss(self):
- return self._forward()
- def get_pred(self):
- return self._forward()
- def get_loss_keys(self):
- return ['loss_cls', 'loss_box', 'loss_quality']
- def get_distill_loss(self,
- fcos_head_outs,
- teacher_fcos_head_outs,
- ratio=0.01):
- student_logits, student_deltas, student_quality = fcos_head_outs
- teacher_logits, teacher_deltas, teacher_quality = teacher_fcos_head_outs
- nc = student_logits[0].shape[1]
- student_logits = paddle.concat(
- [
- _.transpose([0, 2, 3, 1]).reshape([-1, nc])
- for _ in student_logits
- ],
- axis=0)
- teacher_logits = paddle.concat(
- [
- _.transpose([0, 2, 3, 1]).reshape([-1, nc])
- for _ in teacher_logits
- ],
- axis=0)
- student_deltas = paddle.concat(
- [
- _.transpose([0, 2, 3, 1]).reshape([-1, 4])
- for _ in student_deltas
- ],
- axis=0)
- teacher_deltas = paddle.concat(
- [
- _.transpose([0, 2, 3, 1]).reshape([-1, 4])
- for _ in teacher_deltas
- ],
- axis=0)
- student_quality = paddle.concat(
- [
- _.transpose([0, 2, 3, 1]).reshape([-1, 1])
- for _ in student_quality
- ],
- axis=0)
- teacher_quality = paddle.concat(
- [
- _.transpose([0, 2, 3, 1]).reshape([-1, 1])
- for _ in teacher_quality
- ],
- axis=0)
- with paddle.no_grad():
- # Region Selection
- count_num = int(teacher_logits.shape[0] * ratio)
- teacher_probs = F.sigmoid(teacher_logits)
- max_vals = paddle.max(teacher_probs, 1)
- sorted_vals, sorted_inds = paddle.topk(max_vals,
- teacher_logits.shape[0])
- mask = paddle.zeros_like(max_vals)
- mask[sorted_inds[:count_num]] = 1.
- fg_num = sorted_vals[:count_num].sum()
- b_mask = mask > 0
- # distill_loss_cls
- loss_logits = QFLv2(
- F.sigmoid(student_logits),
- teacher_probs,
- weight=mask,
- reduction="sum") / fg_num
- # distill_loss_box
- inputs = paddle.concat(
- (-student_deltas[b_mask][..., :2], student_deltas[b_mask][..., 2:]),
- axis=-1)
- targets = paddle.concat(
- (-teacher_deltas[b_mask][..., :2], teacher_deltas[b_mask][..., 2:]),
- axis=-1)
- iou_loss = GIoULoss(reduction='mean')
- loss_deltas = iou_loss(inputs, targets)
- # distill_loss_quality
- loss_quality = F.binary_cross_entropy(
- F.sigmoid(student_quality[b_mask]),
- F.sigmoid(teacher_quality[b_mask]),
- reduction='mean')
- return {
- "distill_loss_cls": loss_logits,
- "distill_loss_box": loss_deltas,
- "distill_loss_quality": loss_quality,
- "fg_sum": fg_num,
- }
|