123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- import numpy as np
- __all__ = ['FasterRCNN']
- @register
- class FasterRCNN(BaseArch):
- """
- Faster R-CNN network, see https://arxiv.org/abs/1506.01497
- Args:
- backbone (object): backbone instance
- rpn_head (object): `RPNHead` instance
- bbox_head (object): `BBoxHead` instance
- bbox_post_process (object): `BBoxPostProcess` instance
- neck (object): 'FPN' instance
- """
- __category__ = 'architecture'
- __inject__ = ['bbox_post_process']
- def __init__(self,
- backbone,
- rpn_head,
- bbox_head,
- bbox_post_process,
- neck=None):
- super(FasterRCNN, self).__init__()
- self.backbone = backbone
- self.neck = neck
- self.rpn_head = rpn_head
- self.bbox_head = bbox_head
- self.bbox_post_process = bbox_post_process
- def init_cot_head(self, relationship):
- self.bbox_head.init_cot_head(relationship)
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- backbone = create(cfg['backbone'])
- kwargs = {'input_shape': backbone.out_shape}
- neck = cfg['neck'] and create(cfg['neck'], **kwargs)
- out_shape = neck and neck.out_shape or backbone.out_shape
- kwargs = {'input_shape': out_shape}
- rpn_head = create(cfg['rpn_head'], **kwargs)
- bbox_head = create(cfg['bbox_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'neck': neck,
- "rpn_head": rpn_head,
- "bbox_head": bbox_head,
- }
- def _forward(self):
- body_feats = self.backbone(self.inputs)
- if self.neck is not None:
- body_feats = self.neck(body_feats)
- if self.training:
- rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
- bbox_loss, _ = self.bbox_head(body_feats, rois, rois_num,
- self.inputs)
- return rpn_loss, bbox_loss
- else:
- rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
- preds, _ = self.bbox_head(body_feats, rois, rois_num, None)
- im_shape = self.inputs['im_shape']
- scale_factor = self.inputs['scale_factor']
- bbox, bbox_num = self.bbox_post_process(preds, (rois, rois_num),
- im_shape, scale_factor)
- # rescale the prediction back to origin image
- bboxes, bbox_pred, bbox_num = self.bbox_post_process.get_pred(
- bbox, bbox_num, im_shape, scale_factor)
- return bbox_pred, bbox_num
- def get_loss(self, ):
- rpn_loss, bbox_loss = self._forward()
- loss = {}
- loss.update(rpn_loss)
- loss.update(bbox_loss)
- total_loss = paddle.add_n(list(loss.values()))
- loss.update({'loss': total_loss})
- return loss
- def get_pred(self):
- bbox_pred, bbox_num = self._forward()
- output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
- return output
- def target_bbox_forward(self, data):
- body_feats = self.backbone(data)
- if self.neck is not None:
- body_feats = self.neck(body_feats)
- rois = [roi for roi in data['gt_bbox']]
- rois_num = paddle.concat([paddle.shape(roi)[0] for roi in rois])
- preds, _ = self.bbox_head(body_feats, rois, rois_num, None, cot=True)
- return preds
- def relationship_learning(self, loader, num_classes_novel):
- print('computing relationship')
- train_labels_list = []
- label_list = []
- for step_id, data in enumerate(loader):
- _, bbox_prob = self.target_bbox_forward(data)
- batch_size = data['im_id'].shape[0]
- for i in range(batch_size):
- num_bbox = data['gt_class'][i].shape[0]
- train_labels = data['gt_class'][i]
- train_labels_list.append(train_labels.numpy().squeeze(1))
- base_labels = bbox_prob.detach().numpy()[:,:-1]
- label_list.append(base_labels)
- labels = np.concatenate(train_labels_list, 0)
- probabilities = np.concatenate(label_list, 0)
- N_t = np.max(labels) + 1
- conditional = []
- for i in range(N_t):
- this_class = probabilities[labels == i]
- average = np.mean(this_class, axis=0, keepdims=True)
- conditional.append(average)
- return np.concatenate(conditional)
|