123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from .meta_arch import BaseArch
- from ppdet.core.workspace import register, create
- __all__ = ['DETR']
- @register
- class DETR(BaseArch):
- __category__ = 'architecture'
- __inject__ = ['post_process']
- __shared__ = ['exclude_post_process']
- def __init__(self,
- backbone,
- transformer,
- detr_head,
- post_process='DETRBBoxPostProcess',
- exclude_post_process=False):
- super(DETR, self).__init__()
- self.backbone = backbone
- self.transformer = transformer
- self.detr_head = detr_head
- self.post_process = post_process
- self.exclude_post_process = exclude_post_process
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- # backbone
- backbone = create(cfg['backbone'])
- # transformer
- kwargs = {'input_shape': backbone.out_shape}
- transformer = create(cfg['transformer'], **kwargs)
- # head
- kwargs = {
- 'hidden_dim': transformer.hidden_dim,
- 'nhead': transformer.nhead,
- 'input_shape': backbone.out_shape
- }
- detr_head = create(cfg['detr_head'], **kwargs)
- return {
- 'backbone': backbone,
- 'transformer': transformer,
- "detr_head": detr_head,
- }
- def _forward(self):
- # Backbone
- body_feats = self.backbone(self.inputs)
- # Transformer
- pad_mask = self.inputs['pad_mask'] if self.training else None
- out_transformer = self.transformer(body_feats, pad_mask, self.inputs)
- # DETR Head
- if self.training:
- return self.detr_head(out_transformer, body_feats, self.inputs)
- else:
- preds = self.detr_head(out_transformer, body_feats)
- if self.exclude_post_process:
- bboxes, logits, masks = preds
- return bboxes, logits
- else:
- bbox, bbox_num = self.post_process(
- preds, self.inputs['im_shape'], self.inputs['scale_factor'])
- return bbox, bbox_num
- def get_loss(self):
- losses = self._forward()
- losses.update({
- 'loss':
- paddle.add_n([v for k, v in losses.items() if 'log' not in k])
- })
- return losses
- def get_pred(self):
- bbox_pred, bbox_num = self._forward()
- output = {
- "bbox": bbox_pred,
- "bbox_num": bbox_num,
- }
- return output
|