123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import copy
- import math
- import numpy as np
- import paddle
- from ppdet.core.workspace import register, create
- from .meta_arch import BaseArch
- from ..keypoint_utils import affine_transform
- from ppdet.data.transform.op_helper import gaussian_radius, gaussian2D, draw_umich_gaussian
- __all__ = ['CenterTrack']
- @register
- class CenterTrack(BaseArch):
- """
- CenterTrack network, see http://arxiv.org/abs/2004.01177
- Args:
- detector (object): 'CenterNet' instance
- plugin_head (object): 'CenterTrackHead' instance
- tracker (object): 'CenterTracker' instance
- """
- __category__ = 'architecture'
- __shared__ = ['mot_metric']
- def __init__(self,
- detector='CenterNet',
- plugin_head='CenterTrackHead',
- tracker='CenterTracker',
- mot_metric=False):
- super(CenterTrack, self).__init__()
- self.detector = detector
- self.plugin_head = plugin_head
- self.tracker = tracker
- self.mot_metric = mot_metric
- self.pre_image = None
- self.deploy = False
- @classmethod
- def from_config(cls, cfg, *args, **kwargs):
- detector = create(cfg['detector'])
- detector_out_shape = detector.neck and detector.neck.out_shape or detector.backbone.out_shape
- kwargs = {'input_shape': detector_out_shape}
- plugin_head = create(cfg['plugin_head'], **kwargs)
- tracker = create(cfg['tracker'])
- return {
- 'detector': detector,
- 'plugin_head': plugin_head,
- 'tracker': tracker,
- }
- def _forward(self):
- if self.training:
- det_outs = self.detector(self.inputs)
- neck_feat = det_outs['neck_feat']
- losses = {}
- for k, v in det_outs.items():
- if 'loss' not in k: continue
- losses.update({k: v})
- plugin_outs = self.plugin_head(neck_feat, self.inputs)
- for k, v in plugin_outs.items():
- if 'loss' not in k: continue
- losses.update({k: v})
- losses['loss'] = det_outs['det_loss'] + plugin_outs['plugin_loss']
- return losses
- else:
- if not self.mot_metric:
- # detection, support bs>=1
- det_outs = self.detector(self.inputs)
- return {
- 'bbox': det_outs['bbox'],
- 'bbox_num': det_outs['bbox_num']
- }
- else:
- # MOT, only support bs=1
- if not self.deploy:
- if self.pre_image is None:
- self.pre_image = self.inputs['image']
- # initializing tracker for the first frame
- self.tracker.init_track([])
- self.inputs['pre_image'] = self.pre_image
- self.pre_image = self.inputs[
- 'image'] # Note: update for next image
- # render input heatmap from tracker status
- pre_hm = self.get_additional_inputs(
- self.tracker.tracks, self.inputs, with_hm=True)
- self.inputs['pre_hm'] = paddle.to_tensor(pre_hm)
- # model inference
- det_outs = self.detector(self.inputs)
- neck_feat = det_outs['neck_feat']
- result = self.plugin_head(
- neck_feat, self.inputs, det_outs['bbox'],
- det_outs['bbox_inds'], det_outs['topk_clses'],
- det_outs['topk_ys'], det_outs['topk_xs'])
- if not self.deploy:
- # convert the cropped and 4x downsampled output coordinate system
- # back to the input image coordinate system
- result = self.plugin_head.centertrack_post_process(
- result, self.inputs, self.tracker.out_thresh)
- return result
- def get_pred(self):
- return self._forward()
- def get_loss(self):
- return self._forward()
- def reset_tracking(self):
- self.tracker.reset()
- self.pre_image = None
- def get_additional_inputs(self, dets, meta, with_hm=True):
- # Render input heatmap from previous trackings.
- trans_input = meta['trans_input'][0].numpy()
- inp_width, inp_height = int(meta['inp_width'][0]), int(meta[
- 'inp_height'][0])
- input_hm = np.zeros((1, inp_height, inp_width), dtype=np.float32)
- for det in dets:
- if det['score'] < self.tracker.pre_thresh:
- continue
- bbox = affine_transform_bbox(det['bbox'], trans_input, inp_width,
- inp_height)
- h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
- if (h > 0 and w > 0):
- radius = gaussian_radius(
- (math.ceil(h), math.ceil(w)), min_overlap=0.7)
- radius = max(0, int(radius))
- ct = np.array(
- [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
- dtype=np.float32)
- ct_int = ct.astype(np.int32)
- if with_hm:
- input_hm[0] = draw_umich_gaussian(input_hm[0], ct_int,
- radius)
- if with_hm:
- input_hm = input_hm[np.newaxis]
- return input_hm
- def affine_transform_bbox(bbox, trans, width, height):
- bbox = np.array(copy.deepcopy(bbox), dtype=np.float32)
- bbox[:2] = affine_transform(bbox[:2], trans)
- bbox[2:] = affine_transform(bbox[2:], trans)
- bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, width - 1)
- bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, height - 1)
- return bbox
|