123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import paddle
- import os
- import json
- from collections import defaultdict, OrderedDict
- import numpy as np
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- __all__ = ['Pose3DEval']
- class AverageMeter(object):
- def __init__(self):
- self.reset()
- def reset(self):
- self.val = 0
- self.avg = 0
- self.sum = 0
- self.count = 0
- def update(self, val, n=1):
- self.val = val
- self.sum += val * n
- self.count += n
- self.avg = self.sum / self.count
- def mean_per_joint_position_error(pred, gt, has_3d_joints):
- """
- Compute mPJPE
- """
- gt = gt[has_3d_joints == 1]
- gt = gt[:, :, :3]
- pred = pred[has_3d_joints == 1]
- with paddle.no_grad():
- gt_pelvis = (gt[:, 2, :] + gt[:, 3, :]) / 2
- gt = gt - gt_pelvis[:, None, :]
- pred_pelvis = (pred[:, 2, :] + pred[:, 3, :]) / 2
- pred = pred - pred_pelvis[:, None, :]
- error = paddle.sqrt(((pred - gt)**2).sum(axis=-1)).mean(axis=-1).numpy()
- return error
- def compute_similarity_transform(S1, S2):
- """Computes a similarity transform (sR, t) that takes
- a set of 3D points S1 (3 x N) closest to a set of 3D points S2,
- where R is an 3x3 rotation matrix, t 3x1 translation, s scale.
- i.e. solves the orthogonal Procrutes problem.
- """
- transposed = False
- if S1.shape[0] != 3 and S1.shape[0] != 2:
- S1 = S1.T
- S2 = S2.T
- transposed = True
- assert (S2.shape[1] == S1.shape[1])
- # 1. Remove mean.
- mu1 = S1.mean(axis=1, keepdims=True)
- mu2 = S2.mean(axis=1, keepdims=True)
- X1 = S1 - mu1
- X2 = S2 - mu2
- # 2. Compute variance of X1 used for scale.
- var1 = np.sum(X1**2)
- # 3. The outer product of X1 and X2.
- K = X1.dot(X2.T)
- # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
- # singular vectors of K.
- U, s, Vh = np.linalg.svd(K)
- V = Vh.T
- # Construct Z that fixes the orientation of R to get det(R)=1.
- Z = np.eye(U.shape[0])
- Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
- # Construct R.
- R = V.dot(Z.dot(U.T))
- # 5. Recover scale.
- scale = np.trace(R.dot(K)) / var1
- # 6. Recover translation.
- t = mu2 - scale * (R.dot(mu1))
- # 7. Error:
- S1_hat = scale * R.dot(S1) + t
- if transposed:
- S1_hat = S1_hat.T
- return S1_hat
- def compute_similarity_transform_batch(S1, S2):
- """Batched version of compute_similarity_transform."""
- S1_hat = np.zeros_like(S1)
- for i in range(S1.shape[0]):
- S1_hat[i] = compute_similarity_transform(S1[i], S2[i])
- return S1_hat
- def reconstruction_error(S1, S2, reduction='mean'):
- """Do Procrustes alignment and compute reconstruction error."""
- S1_hat = compute_similarity_transform_batch(S1, S2)
- re = np.sqrt(((S1_hat - S2)**2).sum(axis=-1)).mean(axis=-1)
- if reduction == 'mean':
- re = re.mean()
- elif reduction == 'sum':
- re = re.sum()
- return re
- def all_gather(data):
- if paddle.distributed.get_world_size() == 1:
- return data
- vlist = []
- paddle.distributed.all_gather(vlist, data)
- data = paddle.concat(vlist, 0)
- return data
- class Pose3DEval(object):
- """refer to
- https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
- Copyright (c) Microsoft, under the MIT License.
- """
- def __init__(self, output_eval, save_prediction_only=False):
- super(Pose3DEval, self).__init__()
- self.output_eval = output_eval
- self.res_file = os.path.join(output_eval, "pose3d_results.json")
- self.save_prediction_only = save_prediction_only
- self.reset()
- def reset(self):
- self.PAmPJPE = AverageMeter()
- self.mPJPE = AverageMeter()
- self.eval_results = {}
- def get_human36m_joints(self, input):
- J24_TO_J14 = paddle.to_tensor(
- [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18])
- J24_TO_J17 = paddle.to_tensor(
- [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19])
- return paddle.index_select(input, J24_TO_J14, axis=1)
- def update(self, inputs, outputs):
- gt_3d_joints = all_gather(inputs['joints_3d'])
- has_3d_joints = all_gather(inputs['has_3d_joints'])
- pred_3d_joints = all_gather(outputs['pose3d'])
- if gt_3d_joints.shape[1] == 24:
- gt_3d_joints = self.get_human36m_joints(gt_3d_joints)
- if pred_3d_joints.shape[1] == 24:
- pred_3d_joints = self.get_human36m_joints(pred_3d_joints)
- mPJPE_val = mean_per_joint_position_error(pred_3d_joints, gt_3d_joints,
- has_3d_joints).mean()
- PAmPJPE_val = reconstruction_error(
- pred_3d_joints.numpy(),
- gt_3d_joints[:, :, :3].numpy(),
- reduction=None).mean()
- count = int(np.sum(has_3d_joints.numpy()))
- self.PAmPJPE.update(PAmPJPE_val * 1000., count)
- self.mPJPE.update(mPJPE_val * 1000., count)
- def accumulate(self):
- if self.save_prediction_only:
- logger.info(f'The pose3d result is saved to {self.res_file} '
- 'and do not evaluate the model.')
- return
- self.eval_results['pose3d'] = [-self.mPJPE.avg, -self.PAmPJPE.avg]
- def log(self):
- if self.save_prediction_only:
- return
- stats_names = ['mPJPE', 'PAmPJPE']
- num_values = len(stats_names)
- print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
- print('|---' * (num_values + 1) + '|')
- print(' '.join([
- '| {:.3f}'.format(abs(value))
- for value in self.eval_results['pose3d']
- ]) + ' |')
- def get_results(self):
- return self.eval_results
|