123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import six
- import numpy as np
- def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
- det_res = []
- k = 0
- for i in range(len(bbox_nums)):
- cur_image_id = int(image_id[i][0])
- det_nums = bbox_nums[i]
- for j in range(det_nums):
- dt = bboxes[k]
- k = k + 1
- num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
- if int(num_id) < 0:
- continue
- category_id = label_to_cat_id_map[int(num_id)]
- w = xmax - xmin + bias
- h = ymax - ymin + bias
- bbox = [xmin, ymin, w, h]
- dt_res = {
- 'image_id': cur_image_id,
- 'category_id': category_id,
- 'bbox': bbox,
- 'score': score
- }
- det_res.append(dt_res)
- return det_res
- def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
- det_res = []
- k = 0
- for i in range(len(bbox_nums)):
- cur_image_id = int(image_id[i][0])
- det_nums = bbox_nums[i]
- for j in range(det_nums):
- dt = bboxes[k]
- k = k + 1
- num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
- if int(num_id) < 0:
- continue
- category_id = label_to_cat_id_map[int(num_id)]
- rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
- dt_res = {
- 'image_id': cur_image_id,
- 'category_id': category_id,
- 'bbox': rbox,
- 'score': score
- }
- det_res.append(dt_res)
- return det_res
- def strip_mask(mask):
- row = mask[0, 0, :]
- col = mask[0, :, 0]
- im_h = len(col) - np.count_nonzero(col == -1)
- im_w = len(row) - np.count_nonzero(row == -1)
- return mask[:, :im_h, :im_w]
- def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
- import pycocotools.mask as mask_util
- seg_res = []
- k = 0
- for i in range(len(mask_nums)):
- cur_image_id = int(image_id[i][0])
- det_nums = mask_nums[i]
- mask_i = masks[k:k + det_nums]
- mask_i = strip_mask(mask_i)
- for j in range(det_nums):
- mask = mask_i[j].astype(np.uint8)
- score = float(bboxes[k][1])
- label = int(bboxes[k][0])
- k = k + 1
- if label == -1:
- continue
- cat_id = label_to_cat_id_map[label]
- rle = mask_util.encode(
- np.array(
- mask[:, :, None], order="F", dtype="uint8"))[0]
- if six.PY3:
- if 'counts' in rle:
- rle['counts'] = rle['counts'].decode("utf8")
- sg_res = {
- 'image_id': cur_image_id,
- 'category_id': cat_id,
- 'segmentation': rle,
- 'score': score
- }
- seg_res.append(sg_res)
- return seg_res
- def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
- import pycocotools.mask as mask_util
- segm_res = []
- # for each batch
- segms = results['segm'].astype(np.uint8)
- clsid_labels = results['cate_label']
- clsid_scores = results['cate_score']
- lengths = segms.shape[0]
- im_id = int(image_id[0][0])
- if lengths == 0 or segms is None:
- return None
- # for each sample
- for i in range(lengths - 1):
- clsid = int(clsid_labels[i])
- catid = num_id_to_cat_id_map[clsid]
- score = float(clsid_scores[i])
- mask = segms[i]
- segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
- segm['counts'] = segm['counts'].decode('utf8')
- coco_res = {
- 'image_id': im_id,
- 'category_id': catid,
- 'segmentation': segm,
- 'score': score
- }
- segm_res.append(coco_res)
- return segm_res
- def get_keypoint_res(results, im_id):
- anns = []
- preds = results['keypoint']
- for idx in range(im_id.shape[0]):
- image_id = im_id[idx].item()
- kpts, scores = preds[idx]
- for kpt, score in zip(kpts, scores):
- kpt = kpt.flatten()
- ann = {
- 'image_id': image_id,
- 'category_id': 1, # XXX hard code
- 'keypoints': kpt.tolist(),
- 'score': float(score)
- }
- x = kpt[0::3]
- y = kpt[1::3]
- x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min(y).item(
- ), np.max(y).item()
- ann['area'] = (x1 - x0) * (y1 - y0)
- ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
- anns.append(ann)
- return anns
- def get_pose3d_res(results, im_id):
- anns = []
- preds = results['pose3d']
- for idx in range(im_id.shape[0]):
- image_id = im_id[idx].item()
- pose3d = preds[idx]
- ann = {
- 'image_id': image_id,
- 'category_id': 1, # XXX hard code
- 'pose3d': pose3d.tolist(),
- 'score': float(1.)
- }
- anns.append(ann)
- return anns
|