123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // The code is based on
- // https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/csrc/box_iou_rotated/
- #pragma once
- #include <cassert>
- #include <cmath>
- #include <vector>
- #ifdef __CUDACC__
- // Designates functions callable from the host (CPU) and the device (GPU)
- #define HOST_DEVICE __host__ __device__
- #define HOST_DEVICE_INLINE HOST_DEVICE __forceinline__
- #else
- #include <algorithm>
- #define HOST_DEVICE
- #define HOST_DEVICE_INLINE HOST_DEVICE inline
- #endif
- namespace {
- template <typename T> struct RotatedBox { T x_ctr, y_ctr, w, h, a; };
- template <typename T> struct Point {
- T x, y;
- HOST_DEVICE_INLINE Point(const T &px = 0, const T &py = 0) : x(px), y(py) {}
- HOST_DEVICE_INLINE Point operator+(const Point &p) const {
- return Point(x + p.x, y + p.y);
- }
- HOST_DEVICE_INLINE Point &operator+=(const Point &p) {
- x += p.x;
- y += p.y;
- return *this;
- }
- HOST_DEVICE_INLINE Point operator-(const Point &p) const {
- return Point(x - p.x, y - p.y);
- }
- HOST_DEVICE_INLINE Point operator*(const T coeff) const {
- return Point(x * coeff, y * coeff);
- }
- };
- template <typename T>
- HOST_DEVICE_INLINE T dot_2d(const Point<T> &A, const Point<T> &B) {
- return A.x * B.x + A.y * B.y;
- }
- template <typename T>
- HOST_DEVICE_INLINE T cross_2d(const Point<T> &A, const Point<T> &B) {
- return A.x * B.y - B.x * A.y;
- }
- template <typename T>
- HOST_DEVICE_INLINE void get_rotated_vertices(const RotatedBox<T> &box,
- Point<T> (&pts)[4]) {
- // M_PI / 180. == 0.01745329251
- // double theta = box.a * 0.01745329251;
- // MODIFIED
- double theta = box.a;
- T cosTheta2 = (T)cos(theta) * 0.5f;
- T sinTheta2 = (T)sin(theta) * 0.5f;
- // y: top --> down; x: left --> right
- pts[0].x = box.x_ctr - sinTheta2 * box.h - cosTheta2 * box.w;
- pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
- pts[1].x = box.x_ctr + sinTheta2 * box.h - cosTheta2 * box.w;
- pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
- pts[2].x = 2 * box.x_ctr - pts[0].x;
- pts[2].y = 2 * box.y_ctr - pts[0].y;
- pts[3].x = 2 * box.x_ctr - pts[1].x;
- pts[3].y = 2 * box.y_ctr - pts[1].y;
- }
- template <typename T>
- HOST_DEVICE_INLINE int get_intersection_points(const Point<T> (&pts1)[4],
- const Point<T> (&pts2)[4],
- Point<T> (&intersections)[24]) {
- // Line vector
- // A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
- Point<T> vec1[4], vec2[4];
- for (int i = 0; i < 4; i++) {
- vec1[i] = pts1[(i + 1) % 4] - pts1[i];
- vec2[i] = pts2[(i + 1) % 4] - pts2[i];
- }
- // Line test - test all line combos for intersection
- int num = 0; // number of intersections
- for (int i = 0; i < 4; i++) {
- for (int j = 0; j < 4; j++) {
- // Solve for 2x2 Ax=b
- T det = cross_2d<T>(vec2[j], vec1[i]);
- // This takes care of parallel lines
- if (fabs(det) <= 1e-14) {
- continue;
- }
- auto vec12 = pts2[j] - pts1[i];
- T t1 = cross_2d<T>(vec2[j], vec12) / det;
- T t2 = cross_2d<T>(vec1[i], vec12) / det;
- if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
- intersections[num++] = pts1[i] + vec1[i] * t1;
- }
- }
- }
- // Check for vertices of rect1 inside rect2
- {
- const auto &AB = vec2[0];
- const auto &DA = vec2[3];
- auto ABdotAB = dot_2d<T>(AB, AB);
- auto ADdotAD = dot_2d<T>(DA, DA);
- for (int i = 0; i < 4; i++) {
- // assume ABCD is the rectangle, and P is the point to be judged
- // P is inside ABCD iff. P's projection on AB lies within AB
- // and P's projection on AD lies within AD
- auto AP = pts1[i] - pts2[0];
- auto APdotAB = dot_2d<T>(AP, AB);
- auto APdotAD = -dot_2d<T>(AP, DA);
- if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
- (APdotAD <= ADdotAD)) {
- intersections[num++] = pts1[i];
- }
- }
- }
- // Reverse the check - check for vertices of rect2 inside rect1
- {
- const auto &AB = vec1[0];
- const auto &DA = vec1[3];
- auto ABdotAB = dot_2d<T>(AB, AB);
- auto ADdotAD = dot_2d<T>(DA, DA);
- for (int i = 0; i < 4; i++) {
- auto AP = pts2[i] - pts1[0];
- auto APdotAB = dot_2d<T>(AP, AB);
- auto APdotAD = -dot_2d<T>(AP, DA);
- if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
- (APdotAD <= ADdotAD)) {
- intersections[num++] = pts2[i];
- }
- }
- }
- return num;
- }
- template <typename T>
- HOST_DEVICE_INLINE int convex_hull_graham(const Point<T> (&p)[24],
- const int &num_in, Point<T> (&q)[24],
- bool shift_to_zero = false) {
- assert(num_in >= 2);
- // Step 1:
- // Find point with minimum y
- // if more than 1 points have the same minimum y,
- // pick the one with the minimum x.
- int t = 0;
- for (int i = 1; i < num_in; i++) {
- if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
- t = i;
- }
- }
- auto &start = p[t]; // starting point
- // Step 2:
- // Subtract starting point from every points (for sorting in the next step)
- for (int i = 0; i < num_in; i++) {
- q[i] = p[i] - start;
- }
- // Swap the starting point to position 0
- auto tmp = q[0];
- q[0] = q[t];
- q[t] = tmp;
- // Step 3:
- // Sort point 1 ~ num_in according to their relative cross-product values
- // (essentially sorting according to angles)
- // If the angles are the same, sort according to their distance to origin
- T dist[24];
- for (int i = 0; i < num_in; i++) {
- dist[i] = dot_2d<T>(q[i], q[i]);
- }
- #ifdef __CUDACC__
- // CUDA version
- // In the future, we can potentially use thrust
- // for sorting here to improve speed (though not guaranteed)
- for (int i = 1; i < num_in - 1; i++) {
- for (int j = i + 1; j < num_in; j++) {
- T crossProduct = cross_2d<T>(q[i], q[j]);
- if ((crossProduct < -1e-6) ||
- (fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) {
- auto q_tmp = q[i];
- q[i] = q[j];
- q[j] = q_tmp;
- auto dist_tmp = dist[i];
- dist[i] = dist[j];
- dist[j] = dist_tmp;
- }
- }
- }
- #else
- // CPU version
- std::sort(q + 1, q + num_in,
- [](const Point<T> &A, const Point<T> &B) -> bool {
- T temp = cross_2d<T>(A, B);
- if (fabs(temp) < 1e-6) {
- return dot_2d<T>(A, A) < dot_2d<T>(B, B);
- } else {
- return temp > 0;
- }
- });
- #endif
- // Step 4:
- // Make sure there are at least 2 points (that don't overlap with each other)
- // in the stack
- int k; // index of the non-overlapped second point
- for (k = 1; k < num_in; k++) {
- if (dist[k] > 1e-8) {
- break;
- }
- }
- if (k == num_in) {
- // We reach the end, which means the convex hull is just one point
- q[0] = p[t];
- return 1;
- }
- q[1] = q[k];
- int m = 2; // 2 points in the stack
- // Step 5:
- // Finally we can start the scanning process.
- // When a non-convex relationship between the 3 points is found
- // (either concave shape or duplicated points),
- // we pop the previous point from the stack
- // until the 3-point relationship is convex again, or
- // until the stack only contains two points
- for (int i = k + 1; i < num_in; i++) {
- while (m > 1 && cross_2d<T>(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) {
- m--;
- }
- q[m++] = q[i];
- }
- // Step 6 (Optional):
- // In general sense we need the original coordinates, so we
- // need to shift the points back (reverting Step 2)
- // But if we're only interested in getting the area/perimeter of the shape
- // We can simply return.
- if (!shift_to_zero) {
- for (int i = 0; i < m; i++) {
- q[i] += start;
- }
- }
- return m;
- }
- template <typename T>
- HOST_DEVICE_INLINE T polygon_area(const Point<T> (&q)[24], const int &m) {
- if (m <= 2) {
- return 0;
- }
- T area = 0;
- for (int i = 1; i < m - 1; i++) {
- area += fabs(cross_2d<T>(q[i] - q[0], q[i + 1] - q[0]));
- }
- return area / 2.0;
- }
- template <typename T>
- HOST_DEVICE_INLINE T rboxes_intersection(const RotatedBox<T> &box1,
- const RotatedBox<T> &box2) {
- // There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
- // from rotated_rect_intersection_pts
- Point<T> intersectPts[24], orderedPts[24];
- Point<T> pts1[4];
- Point<T> pts2[4];
- get_rotated_vertices<T>(box1, pts1);
- get_rotated_vertices<T>(box2, pts2);
- int num = get_intersection_points<T>(pts1, pts2, intersectPts);
- if (num <= 2) {
- return 0.0;
- }
- // Convex Hull to order the intersection points in clockwise order and find
- // the contour area.
- int num_convex = convex_hull_graham<T>(intersectPts, num, orderedPts, true);
- return polygon_area<T>(orderedPts, num_convex);
- }
- } // namespace
- template <typename T>
- HOST_DEVICE_INLINE T rbox_iou_single(T const *const box1_raw,
- T const *const box2_raw) {
- // shift center to the middle point to achieve higher precision in result
- RotatedBox<T> box1, box2;
- auto center_shift_x = (box1_raw[0] + box2_raw[0]) / 2.0;
- auto center_shift_y = (box1_raw[1] + box2_raw[1]) / 2.0;
- box1.x_ctr = box1_raw[0] - center_shift_x;
- box1.y_ctr = box1_raw[1] - center_shift_y;
- box1.w = box1_raw[2];
- box1.h = box1_raw[3];
- box1.a = box1_raw[4];
- box2.x_ctr = box2_raw[0] - center_shift_x;
- box2.y_ctr = box2_raw[1] - center_shift_y;
- box2.w = box2_raw[2];
- box2.h = box2_raw[3];
- box2.a = box2_raw[4];
- if (box1.w < 1e-2 || box1.h < 1e-2 || box2.w < 1e-2 || box2.h < 1e-2) {
- return 0.f;
- }
- const T area1 = box1.w * box1.h;
- const T area2 = box2.w * box2.h;
- const T intersection = rboxes_intersection<T>(box1, box2);
- const T iou = intersection / (area1 + area2 - intersection);
- return iou;
- }
- /**
- Computes ceil(a / b)
- */
- HOST_DEVICE inline int CeilDiv(const int a, const int b) {
- return (a + b - 1) / b;
- }
|