123456789101112131415161718192021222324252627282930313233343536373839404142 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ppdet.core.workspace import create
- from ppdet.utils.logger import setup_logger
- logger = setup_logger('ppdet.engine')
- from . import Trainer
- __all__ = ['TrainerCot']
- class TrainerCot(Trainer):
- """
- Trainer for label-cotuning
- calculate the relationship between base_classes and novel_classes
- """
- def __init__(self, cfg, mode='train'):
- super(TrainerCot, self).__init__(cfg, mode)
- self.cotuning_init()
- def cotuning_init(self):
- num_classes_novel = self.cfg['num_classes']
- self.load_weights(self.cfg.pretrain_weights)
- self.model.eval()
- relationship = self.model.relationship_learning(self.loader, num_classes_novel)
-
- self.model.init_cot_head(relationship)
- self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
|