123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import yaml
- from collections import OrderedDict
- import paddle
- from ppdet.data.source.category import get_categories
- from ppdet.utils.logger import setup_logger
- logger = setup_logger('ppdet.engine')
- # Global dictionary
- TRT_MIN_SUBGRAPH = {
- 'YOLO': 3,
- 'PPYOLOE': 3,
- 'SSD': 60,
- 'RCNN': 40,
- 'RetinaNet': 40,
- 'S2ANet': 80,
- 'EfficientDet': 40,
- 'Face': 3,
- 'TTFNet': 60,
- 'FCOS': 16,
- 'SOLOv2': 60,
- 'HigherHRNet': 3,
- 'HRNet': 3,
- 'DeepSORT': 3,
- 'ByteTrack': 10,
- 'CenterTrack': 5,
- 'JDE': 10,
- 'FairMOT': 5,
- 'GFL': 16,
- 'PicoDet': 3,
- 'CenterNet': 5,
- 'TOOD': 5,
- 'YOLOX': 8,
- 'YOLOF': 40,
- 'METRO_Body': 3,
- 'DETR': 3,
- }
- KEYPOINT_ARCH = ['HigherHRNet', 'TopDownHRNet']
- MOT_ARCH = ['JDE', 'FairMOT', 'DeepSORT', 'ByteTrack', 'CenterTrack']
- TO_STATIC_SPEC = {
- 'yolov3_darknet53_270e_coco': [{
- 'im_id': paddle.static.InputSpec(
- name='im_id', shape=[-1, 1], dtype='float32'),
- 'is_crowd': paddle.static.InputSpec(
- name='is_crowd', shape=[-1, 50], dtype='float32'),
- 'gt_bbox': paddle.static.InputSpec(
- name='gt_bbox', shape=[-1, 50, 4], dtype='float32'),
- 'curr_iter': paddle.static.InputSpec(
- name='curr_iter', shape=[-1], dtype='float32'),
- 'image': paddle.static.InputSpec(
- name='image', shape=[-1, 3, -1, -1], dtype='float32'),
- 'im_shape': paddle.static.InputSpec(
- name='im_shape', shape=[-1, 2], dtype='float32'),
- 'scale_factor': paddle.static.InputSpec(
- name='scale_factor', shape=[-1, 2], dtype='float32'),
- 'target0': paddle.static.InputSpec(
- name='target0', shape=[-1, 3, 86, -1, -1], dtype='float32'),
- 'target1': paddle.static.InputSpec(
- name='target1', shape=[-1, 3, 86, -1, -1], dtype='float32'),
- 'target2': paddle.static.InputSpec(
- name='target2', shape=[-1, 3, 86, -1, -1], dtype='float32'),
- }],
- }
- def apply_to_static(config, model):
- filename = config.get('filename', None)
- spec = TO_STATIC_SPEC.get(filename, None)
- model = paddle.jit.to_static(model, input_spec=spec)
- logger.info("Successfully to apply @to_static with specs: {}".format(spec))
- return model
- def _prune_input_spec(input_spec, program, targets):
- # try to prune static program to figure out pruned input spec
- # so we perform following operations in static mode
- device = paddle.get_device()
- paddle.enable_static()
- paddle.set_device(device)
- pruned_input_spec = [{}]
- program = program.clone()
- program = program._prune(targets=targets)
- global_block = program.global_block()
- for name, spec in input_spec[0].items():
- try:
- v = global_block.var(name)
- pruned_input_spec[0][name] = spec
- except Exception:
- pass
- paddle.disable_static(place=device)
- return pruned_input_spec
- def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
- preprocess_list = []
- anno_file = dataset_cfg.get_anno()
- clsid2catid, catid2name = get_categories(metric, anno_file, arch)
- label_list = [str(cat) for cat in catid2name.values()]
- fuse_normalize = reader_cfg.get('fuse_normalize', False)
- sample_transforms = reader_cfg['sample_transforms']
- for st in sample_transforms[1:]:
- for key, value in st.items():
- p = {'type': key}
- if key == 'Resize':
- if int(image_shape[1]) != -1:
- value['target_size'] = image_shape[1:]
- value['interp'] = value.get('interp', 1) # cv2.INTER_LINEAR
- if fuse_normalize and key == 'NormalizeImage':
- continue
- p.update(value)
- preprocess_list.append(p)
- batch_transforms = reader_cfg.get('batch_transforms', None)
- if batch_transforms:
- for bt in batch_transforms:
- for key, value in bt.items():
- # for deploy/infer, use PadStride(stride) instead PadBatch(pad_to_stride)
- if key == 'PadBatch':
- preprocess_list.append({
- 'type': 'PadStride',
- 'stride': value['pad_to_stride']
- })
- break
- return preprocess_list, label_list
- def _parse_tracker(tracker_cfg):
- tracker_params = {}
- for k, v in tracker_cfg.items():
- tracker_params.update({k: v})
- return tracker_params
- def _dump_infer_config(config, path, image_shape, model):
- arch_state = False
- from ppdet.core.config.yaml_helpers import setup_orderdict
- setup_orderdict()
- use_dynamic_shape = True if image_shape[2] == -1 else False
- infer_cfg = OrderedDict({
- 'mode': 'paddle',
- 'draw_threshold': 0.5,
- 'metric': config['metric'],
- 'use_dynamic_shape': use_dynamic_shape
- })
- export_onnx = config.get('export_onnx', False)
- export_eb = config.get('export_eb', False)
- infer_arch = config['architecture']
- if 'RCNN' in infer_arch and export_onnx:
- logger.warning(
- "Exporting RCNN model to ONNX only support batch_size = 1")
- infer_cfg['export_onnx'] = True
- infer_cfg['export_eb'] = export_eb
- if infer_arch in MOT_ARCH:
- if infer_arch == 'DeepSORT':
- tracker_cfg = config['DeepSORTTracker']
- elif infer_arch == 'CenterTrack':
- tracker_cfg = config['CenterTracker']
- else:
- tracker_cfg = config['JDETracker']
- infer_cfg['tracker'] = _parse_tracker(tracker_cfg)
- for arch, min_subgraph_size in TRT_MIN_SUBGRAPH.items():
- if arch in infer_arch:
- infer_cfg['arch'] = arch
- infer_cfg['min_subgraph_size'] = min_subgraph_size
- arch_state = True
- break
- if infer_arch == 'PPYOLOEWithAuxHead':
- infer_arch = 'PPYOLOE'
- if infer_arch in ['PPYOLOE', 'YOLOX', 'YOLOF']:
- infer_cfg['arch'] = infer_arch
- infer_cfg['min_subgraph_size'] = TRT_MIN_SUBGRAPH[infer_arch]
- arch_state = True
- if not arch_state:
- logger.error(
- 'Architecture: {} is not supported for exporting model now.\n'.
- format(infer_arch) +
- 'Please set TRT_MIN_SUBGRAPH in ppdet/engine/export_utils.py')
- os._exit(0)
- if 'mask_head' in config[config['architecture']] and config[config[
- 'architecture']]['mask_head']:
- infer_cfg['mask'] = True
- label_arch = 'detection_arch'
- if infer_arch in KEYPOINT_ARCH:
- label_arch = 'keypoint_arch'
- if infer_arch in MOT_ARCH:
- if config['metric'] in ['COCO', 'VOC']:
- # MOT model run as Detector
- reader_cfg = config['TestReader']
- dataset_cfg = config['TestDataset']
- else:
- # 'metric' in ['MOT', 'MCMOT', 'KITTI']
- label_arch = 'mot_arch'
- reader_cfg = config['TestMOTReader']
- dataset_cfg = config['TestMOTDataset']
- else:
- reader_cfg = config['TestReader']
- dataset_cfg = config['TestDataset']
- infer_cfg['Preprocess'], infer_cfg['label_list'] = _parse_reader(
- reader_cfg, dataset_cfg, config['metric'], label_arch, image_shape[1:])
- if infer_arch == 'PicoDet':
- if hasattr(config, 'export') and config['export'].get(
- 'post_process',
- False) and not config['export'].get('benchmark', False):
- infer_cfg['arch'] = 'GFL'
- head_name = 'PicoHeadV2' if config['PicoHeadV2'] else 'PicoHead'
- infer_cfg['NMS'] = config[head_name]['nms']
- # In order to speed up the prediction, the threshold of nms
- # is adjusted here, which can be changed in infer_cfg.yml
- config[head_name]['nms']["score_threshold"] = 0.3
- config[head_name]['nms']["nms_threshold"] = 0.5
- infer_cfg['fpn_stride'] = config[head_name]['fpn_stride']
- yaml.dump(infer_cfg, open(path, 'w'))
- logger.info("Export inference config file to {}".format(os.path.join(path)))
|