123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # function:
- # operators to process sample,
- # eg: decode/resize/crop image
- from __future__ import absolute_import
- from __future__ import print_function
- from __future__ import division
- try:
- from collections.abc import Sequence
- except Exception:
- from collections import Sequence
- from numbers import Number, Integral
- import uuid
- import random
- import math
- import numpy as np
- import os
- import copy
- import logging
- import cv2
- from PIL import Image, ImageDraw
- import pickle
- import threading
- MUTEX = threading.Lock()
- import paddle
- from ppdet.core.workspace import serializable
- from ..reader import Compose
- from .op_helper import (satisfy_sample_constraint, filter_and_process,
- generate_sample_bbox, clip_bbox, data_anchor_sampling,
- satisfy_sample_constraint_coverage, crop_image_sampling,
- generate_sample_bbox_square, bbox_area_sampling,
- is_poly, get_border)
- from ppdet.utils.logger import setup_logger
- from ppdet.modeling.keypoint_utils import get_affine_transform, affine_transform
- logger = setup_logger(__name__)
- registered_ops = []
- def register_op(cls):
- registered_ops.append(cls.__name__)
- if not hasattr(BaseOperator, cls.__name__):
- setattr(BaseOperator, cls.__name__, cls)
- else:
- raise KeyError("The {} class has been registered.".format(cls.__name__))
- return serializable(cls)
- class BboxError(ValueError):
- pass
- class ImageError(ValueError):
- pass
- class BaseOperator(object):
- def __init__(self, name=None):
- if name is None:
- name = self.__class__.__name__
- self._id = name + '_' + str(uuid.uuid4())[-6:]
- def apply(self, sample, context=None):
- """ Process a sample.
- Args:
- sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
- context (dict): info about this sample processing
- Returns:
- result (dict): a processed sample
- """
- return sample
- def __call__(self, sample, context=None):
- """ Process a sample.
- Args:
- sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
- context (dict): info about this sample processing
- Returns:
- result (dict): a processed sample
- """
- if isinstance(sample, Sequence):
- for i in range(len(sample)):
- sample[i] = self.apply(sample[i], context)
- else:
- sample = self.apply(sample, context)
- return sample
- def __str__(self):
- return str(self._id)
- @register_op
- class Decode(BaseOperator):
- def __init__(self):
- """ Transform the image data to numpy format following the rgb format
- """
- super(Decode, self).__init__()
- def apply(self, sample, context=None):
- """ load image if 'im_file' field is not empty but 'image' is"""
- if 'image' not in sample:
- with open(sample['im_file'], 'rb') as f:
- sample['image'] = f.read()
- sample.pop('im_file')
- try:
- im = sample['image']
- data = np.frombuffer(im, dtype='uint8')
- im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
- if 'keep_ori_im' in sample and sample['keep_ori_im']:
- sample['ori_image'] = im
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- except:
- im = sample['image']
- sample['image'] = im
- if 'h' not in sample:
- sample['h'] = im.shape[0]
- elif sample['h'] != im.shape[0]:
- logger.warning(
- "The actual image height: {} is not equal to the "
- "height: {} in annotation, and update sample['h'] by actual "
- "image height.".format(im.shape[0], sample['h']))
- sample['h'] = im.shape[0]
- if 'w' not in sample:
- sample['w'] = im.shape[1]
- elif sample['w'] != im.shape[1]:
- logger.warning(
- "The actual image width: {} is not equal to the "
- "width: {} in annotation, and update sample['w'] by actual "
- "image width.".format(im.shape[1], sample['w']))
- sample['w'] = im.shape[1]
- sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
- return sample
- def _make_dirs(dirname):
- try:
- from pathlib import Path
- except ImportError:
- from pathlib2 import Path
- Path(dirname).mkdir(exist_ok=True)
- @register_op
- class DecodeCache(BaseOperator):
- def __init__(self, cache_root=None):
- '''decode image and caching
- '''
- super(DecodeCache, self).__init__()
- self.use_cache = False if cache_root is None else True
- self.cache_root = cache_root
- if cache_root is not None:
- _make_dirs(cache_root)
- def apply(self, sample, context=None):
- if self.use_cache and os.path.exists(
- self.cache_path(self.cache_root, sample['im_file'])):
- path = self.cache_path(self.cache_root, sample['im_file'])
- im = self.load(path)
- else:
- if 'image' not in sample:
- with open(sample['im_file'], 'rb') as f:
- sample['image'] = f.read()
- im = sample['image']
- data = np.frombuffer(im, dtype='uint8')
- im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
- if 'keep_ori_im' in sample and sample['keep_ori_im']:
- sample['ori_image'] = im
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- if self.use_cache and not os.path.exists(
- self.cache_path(self.cache_root, sample['im_file'])):
- path = self.cache_path(self.cache_root, sample['im_file'])
- self.dump(im, path)
- sample['image'] = im
- sample['h'] = im.shape[0]
- sample['w'] = im.shape[1]
- sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
- sample.pop('im_file')
- return sample
- @staticmethod
- def cache_path(dir_oot, im_file):
- return os.path.join(dir_oot, os.path.basename(im_file) + '.pkl')
- @staticmethod
- def load(path):
- with open(path, 'rb') as f:
- im = pickle.load(f)
- return im
- @staticmethod
- def dump(obj, path):
- MUTEX.acquire()
- try:
- with open(path, 'wb') as f:
- pickle.dump(obj, f)
- except Exception as e:
- logger.warning('dump {} occurs exception {}'.format(path, str(e)))
- finally:
- MUTEX.release()
- @register_op
- class SniperDecodeCrop(BaseOperator):
- def __init__(self):
- super(SniperDecodeCrop, self).__init__()
- def __call__(self, sample, context=None):
- if 'image' not in sample:
- with open(sample['im_file'], 'rb') as f:
- sample['image'] = f.read()
- sample.pop('im_file')
- im = sample['image']
- data = np.frombuffer(im, dtype='uint8')
- im = cv2.imdecode(data, cv2.IMREAD_COLOR) # BGR mode, but need RGB mode
- if 'keep_ori_im' in sample and sample['keep_ori_im']:
- sample['ori_image'] = im
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- chip = sample['chip']
- x1, y1, x2, y2 = [int(xi) for xi in chip]
- im = im[max(y1, 0):min(y2, im.shape[0]), max(x1, 0):min(x2, im.shape[
- 1]), :]
- sample['image'] = im
- h = im.shape[0]
- w = im.shape[1]
- # sample['im_info'] = [h, w, 1.0]
- sample['h'] = h
- sample['w'] = w
- sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
- return sample
- @register_op
- class Permute(BaseOperator):
- def __init__(self):
- """
- Change the channel to be (C, H, W)
- """
- super(Permute, self).__init__()
- def apply(self, sample, context=None):
- im = sample['image']
- im = im.transpose((2, 0, 1))
- sample['image'] = im
- if 'pre_image' in sample:
- pre_im = sample['pre_image']
- pre_im = pre_im.transpose((2, 0, 1))
- sample['pre_image'] = pre_im
- return sample
- @register_op
- class Lighting(BaseOperator):
- """
- Lighting the image by eigenvalues and eigenvectors
- Args:
- eigval (list): eigenvalues
- eigvec (list): eigenvectors
- alphastd (float): random weight of lighting, 0.1 by default
- """
- def __init__(self, eigval, eigvec, alphastd=0.1):
- super(Lighting, self).__init__()
- self.alphastd = alphastd
- self.eigval = np.array(eigval).astype('float32')
- self.eigvec = np.array(eigvec).astype('float32')
- def apply(self, sample, context=None):
- alpha = np.random.normal(scale=self.alphastd, size=(3, ))
- sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
- if 'pre_image' in sample:
- sample['pre_image'] += np.dot(self.eigvec, self.eigval * alpha)
- return sample
- @register_op
- class RandomErasingImage(BaseOperator):
- def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
- """
- Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
- Args:
- prob (float): probability to carry out random erasing
- lower (float): lower limit of the erasing area ratio
- higher (float): upper limit of the erasing area ratio
- aspect_ratio (float): aspect ratio of the erasing region
- """
- super(RandomErasingImage, self).__init__()
- self.prob = prob
- self.lower = lower
- self.higher = higher
- self.aspect_ratio = aspect_ratio
- def apply(self, sample, context=None):
- gt_bbox = sample['gt_bbox']
- im = sample['image']
- if not isinstance(im, np.ndarray):
- raise TypeError("{}: image is not a numpy array.".format(self))
- if len(im.shape) != 3:
- raise ImageError("{}: image is not 3-dimensional.".format(self))
- for idx in range(gt_bbox.shape[0]):
- if self.prob <= np.random.rand():
- continue
- x1, y1, x2, y2 = gt_bbox[idx, :]
- w_bbox = x2 - x1
- h_bbox = y2 - y1
- area = w_bbox * h_bbox
- target_area = random.uniform(self.lower, self.higher) * area
- aspect_ratio = random.uniform(self.aspect_ratio,
- 1 / self.aspect_ratio)
- h = int(round(math.sqrt(target_area * aspect_ratio)))
- w = int(round(math.sqrt(target_area / aspect_ratio)))
- if w < w_bbox and h < h_bbox:
- off_y1 = random.randint(0, int(h_bbox - h))
- off_x1 = random.randint(0, int(w_bbox - w))
- im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
- x1 + off_x1 + w), :] = 0
- sample['image'] = im
- return sample
- @register_op
- class NormalizeImage(BaseOperator):
- def __init__(self,
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225],
- is_scale=True,
- norm_type='mean_std'):
- """
- Args:
- mean (list): the pixel mean
- std (list): the pixel variance
- is_scale (bool): scale the pixel to [0,1]
- norm_type (str): type in ['mean_std', 'none']
- """
- super(NormalizeImage, self).__init__()
- self.mean = mean
- self.std = std
- self.is_scale = is_scale
- self.norm_type = norm_type
- if not (isinstance(self.mean, list) and isinstance(self.std, list) and
- isinstance(self.is_scale, bool) and
- self.norm_type in ['mean_std', 'none']):
- raise TypeError("{}: input type is invalid.".format(self))
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise ValueError('{}: std is invalid!'.format(self))
- def apply(self, sample, context=None):
- """Normalize the image.
- Operators:
- 1.(optional) Scale the pixel to [0,1]
- 2.(optional) Each pixel minus mean and is divided by std
- """
- im = sample['image']
- im = im.astype(np.float32, copy=False)
- if self.is_scale:
- scale = 1.0 / 255.0
- im *= scale
- if self.norm_type == 'mean_std':
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- im -= mean
- im /= std
- sample['image'] = im
- if 'pre_image' in sample:
- pre_im = sample['pre_image']
- pre_im = pre_im.astype(np.float32, copy=False)
- if self.is_scale:
- scale = 1.0 / 255.0
- pre_im *= scale
- if self.norm_type == 'mean_std':
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- pre_im -= mean
- pre_im /= std
- sample['pre_image'] = pre_im
- return sample
- @register_op
- class GridMask(BaseOperator):
- def __init__(self,
- use_h=True,
- use_w=True,
- rotate=1,
- offset=False,
- ratio=0.5,
- mode=1,
- prob=0.7,
- upper_iter=360000):
- """
- GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
- Args:
- use_h (bool): whether to mask vertically
- use_w (boo;): whether to mask horizontally
- rotate (float): angle for the mask to rotate
- offset (float): mask offset
- ratio (float): mask ratio
- mode (int): gridmask mode
- prob (float): max probability to carry out gridmask
- upper_iter (int): suggested to be equal to global max_iter
- """
- super(GridMask, self).__init__()
- self.use_h = use_h
- self.use_w = use_w
- self.rotate = rotate
- self.offset = offset
- self.ratio = ratio
- self.mode = mode
- self.prob = prob
- self.upper_iter = upper_iter
- from .gridmask_utils import Gridmask
- self.gridmask_op = Gridmask(
- use_h,
- use_w,
- rotate=rotate,
- offset=offset,
- ratio=ratio,
- mode=mode,
- prob=prob,
- upper_iter=upper_iter)
- def apply(self, sample, context=None):
- sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter'])
- return sample
- @register_op
- class RandomDistort(BaseOperator):
- """Random color distortion.
- Args:
- hue (list): hue settings. in [lower, upper, probability] format.
- saturation (list): saturation settings. in [lower, upper, probability] format.
- contrast (list): contrast settings. in [lower, upper, probability] format.
- brightness (list): brightness settings. in [lower, upper, probability] format.
- random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
- order.
- count (int): the number of doing distrot
- random_channel (bool): whether to swap channels randomly
- """
- def __init__(self,
- hue=[-18, 18, 0.5],
- saturation=[0.5, 1.5, 0.5],
- contrast=[0.5, 1.5, 0.5],
- brightness=[0.5, 1.5, 0.5],
- random_apply=True,
- count=4,
- random_channel=False):
- super(RandomDistort, self).__init__()
- self.hue = hue
- self.saturation = saturation
- self.contrast = contrast
- self.brightness = brightness
- self.random_apply = random_apply
- self.count = count
- self.random_channel = random_channel
- def apply_hue(self, img):
- low, high, prob = self.hue
- if np.random.uniform(0., 1.) < prob:
- return img
- img = img.astype(np.float32)
- # it works, but result differ from HSV version
- delta = np.random.uniform(low, high)
- u = np.cos(delta * np.pi)
- w = np.sin(delta * np.pi)
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
- [0.211, -0.523, 0.311]])
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
- [1.0, -1.107, 1.705]])
- t = np.dot(np.dot(ityiq, bt), tyiq).T
- img = np.dot(img, t)
- return img
- def apply_saturation(self, img):
- low, high, prob = self.saturation
- if np.random.uniform(0., 1.) < prob:
- return img
- delta = np.random.uniform(low, high)
- img = img.astype(np.float32)
- # it works, but result differ from HSV version
- gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
- gray = gray.sum(axis=2, keepdims=True)
- gray *= (1.0 - delta)
- img *= delta
- img += gray
- return img
- def apply_contrast(self, img):
- low, high, prob = self.contrast
- if np.random.uniform(0., 1.) < prob:
- return img
- delta = np.random.uniform(low, high)
- img = img.astype(np.float32)
- img *= delta
- return img
- def apply_brightness(self, img):
- low, high, prob = self.brightness
- if np.random.uniform(0., 1.) < prob:
- return img
- delta = np.random.uniform(low, high)
- img = img.astype(np.float32)
- img += delta
- return img
- def apply(self, sample, context=None):
- img = sample['image']
- if self.random_apply:
- functions = [
- self.apply_brightness, self.apply_contrast,
- self.apply_saturation, self.apply_hue
- ]
- distortions = np.random.permutation(functions)[:self.count]
- for func in distortions:
- img = func(img)
- sample['image'] = img
- return sample
- img = self.apply_brightness(img)
- mode = np.random.randint(0, 2)
- if mode:
- img = self.apply_contrast(img)
- img = self.apply_saturation(img)
- img = self.apply_hue(img)
- if not mode:
- img = self.apply_contrast(img)
- if self.random_channel:
- if np.random.randint(0, 2):
- img = img[..., np.random.permutation(3)]
- sample['image'] = img
- return sample
- @register_op
- class AutoAugment(BaseOperator):
- def __init__(self, autoaug_type="v1"):
- """
- Args:
- autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
- """
- super(AutoAugment, self).__init__()
- self.autoaug_type = autoaug_type
- def apply(self, sample, context=None):
- """
- Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
- """
- im = sample['image']
- gt_bbox = sample['gt_bbox']
- if not isinstance(im, np.ndarray):
- raise TypeError("{}: image is not a numpy array.".format(self))
- if len(im.shape) != 3:
- raise ImageError("{}: image is not 3-dimensional.".format(self))
- if len(gt_bbox) == 0:
- return sample
- height, width, _ = im.shape
- norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
- norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
- norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
- norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
- norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
- from .autoaugment_utils import distort_image_with_autoaugment
- im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
- self.autoaug_type)
- gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
- gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
- gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
- gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
- sample['image'] = im
- sample['gt_bbox'] = gt_bbox
- return sample
- @register_op
- class RandomFlip(BaseOperator):
- def __init__(self, prob=0.5):
- """
- Args:
- prob (float): the probability of flipping image
- """
- super(RandomFlip, self).__init__()
- self.prob = prob
- if not (isinstance(self.prob, float)):
- raise TypeError("{}: input type is invalid.".format(self))
- def apply_segm(self, segms, height, width):
- def _flip_poly(poly, width):
- flipped_poly = np.array(poly)
- flipped_poly[0::2] = width - np.array(poly[0::2])
- return flipped_poly.tolist()
- def _flip_rle(rle, height, width):
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- mask = mask[:, ::-1]
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- flipped_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- flipped_segms.append([_flip_poly(poly, width) for poly in segm])
- else:
- # RLE format
- import pycocotools.mask as mask_util
- flipped_segms.append(_flip_rle(segm, height, width))
- return flipped_segms
- def apply_keypoint(self, gt_keypoint, width):
- for i in range(gt_keypoint.shape[1]):
- if i % 2 == 0:
- old_x = gt_keypoint[:, i].copy()
- gt_keypoint[:, i] = width - old_x
- return gt_keypoint
- def apply_image(self, image):
- return image[:, ::-1, :]
- def apply_bbox(self, bbox, width):
- oldx1 = bbox[:, 0].copy()
- oldx2 = bbox[:, 2].copy()
- bbox[:, 0] = width - oldx2
- bbox[:, 2] = width - oldx1
- return bbox
- def apply(self, sample, context=None):
- """Filp the image and bounding box.
- Operators:
- 1. Flip the image numpy.
- 2. Transform the bboxes' x coordinates.
- (Must judge whether the coordinates are normalized!)
- 3. Transform the segmentations' x coordinates.
- (Must judge whether the coordinates are normalized!)
- Output:
- sample: the image, bounding box and segmentation part
- in sample are flipped.
- """
- if np.random.uniform(0, 1) < self.prob:
- im = sample['image']
- height, width = im.shape[:2]
- im = self.apply_image(im)
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
- width)
- if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
- sample['gt_keypoint'] = self.apply_keypoint(
- sample['gt_keypoint'], width)
- if 'semantic' in sample and sample['semantic']:
- sample['semantic'] = sample['semantic'][:, ::-1]
- if 'gt_segm' in sample and sample['gt_segm'].any():
- sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]
- sample['flipped'] = True
- sample['image'] = im
- return sample
- @register_op
- class Resize(BaseOperator):
- def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
- """
- Resize image to target size. if keep_ratio is True,
- resize the image's long side to the maximum of target_size
- if keep_ratio is False, resize the image to target size(h, w)
- Args:
- target_size (int|list): image target size
- keep_ratio (bool): whether keep_ratio or not, default true
- interp (int): the interpolation method
- """
- super(Resize, self).__init__()
- self.keep_ratio = keep_ratio
- self.interp = interp
- if not isinstance(target_size, (Integral, Sequence)):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
- format(type(target_size)))
- if isinstance(target_size, Integral):
- target_size = [target_size, target_size]
- self.target_size = target_size
- def apply_image(self, image, scale):
- im_scale_x, im_scale_y = scale
- return cv2.resize(
- image,
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=self.interp)
- def apply_bbox(self, bbox, scale, size):
- im_scale_x, im_scale_y = scale
- resize_w, resize_h = size
- bbox[:, 0::2] *= im_scale_x
- bbox[:, 1::2] *= im_scale_y
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
- return bbox
- def apply_segm(self, segms, im_size, scale):
- def _resize_poly(poly, im_scale_x, im_scale_y):
- resized_poly = np.array(poly).astype('float32')
- resized_poly[0::2] *= im_scale_x
- resized_poly[1::2] *= im_scale_y
- return resized_poly.tolist()
- def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, im_h, im_w)
- mask = mask_util.decode(rle)
- mask = cv2.resize(
- mask,
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=self.interp)
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- im_h, im_w = im_size
- im_scale_x, im_scale_y = scale
- resized_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- resized_segms.append([
- _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
- ])
- else:
- # RLE format
- import pycocotools.mask as mask_util
- resized_segms.append(
- _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
- return resized_segms
- def apply(self, sample, context=None):
- """ Resize the image numpy.
- """
- im = sample['image']
- if not isinstance(im, np.ndarray):
- raise TypeError("{}: image type is not numpy.".format(self))
- if len(im.shape) != 3:
- raise ImageError('{}: image is not 3-dimensional.'.format(self))
- # apply image
- im_shape = im.shape
- if self.keep_ratio:
- im_size_min = np.min(im_shape[0:2])
- im_size_max = np.max(im_shape[0:2])
- target_size_min = np.min(self.target_size)
- target_size_max = np.max(self.target_size)
- im_scale = min(target_size_min / im_size_min,
- target_size_max / im_size_max)
- resize_h = im_scale * float(im_shape[0])
- resize_w = im_scale * float(im_shape[1])
- im_scale_x = im_scale
- im_scale_y = im_scale
- else:
- resize_h, resize_w = self.target_size
- im_scale_y = resize_h / im_shape[0]
- im_scale_x = resize_w / im_shape[1]
- im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
- sample['image'] = im.astype(np.float32)
- sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
- if 'scale_factor' in sample:
- scale_factor = sample['scale_factor']
- sample['scale_factor'] = np.asarray(
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
- dtype=np.float32)
- else:
- sample['scale_factor'] = np.asarray(
- [im_scale_y, im_scale_x], dtype=np.float32)
- # apply bbox
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
- [im_scale_x, im_scale_y],
- [resize_w, resize_h])
- # apply polygon
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
- [im_scale_x, im_scale_y])
- # apply semantic
- if 'semantic' in sample and sample['semantic']:
- semantic = sample['semantic']
- semantic = cv2.resize(
- semantic.astype('float32'),
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=self.interp)
- semantic = np.asarray(semantic).astype('int32')
- semantic = np.expand_dims(semantic, 0)
- sample['semantic'] = semantic
- # apply gt_segm
- if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
- masks = [
- cv2.resize(
- gt_segm,
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=cv2.INTER_NEAREST)
- for gt_segm in sample['gt_segm']
- ]
- sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
- return sample
- @register_op
- class MultiscaleTestResize(BaseOperator):
- def __init__(self,
- origin_target_size=[800, 1333],
- target_size=[],
- interp=cv2.INTER_LINEAR,
- use_flip=True):
- """
- Rescale image to the each size in target size, and capped at max_size.
- Args:
- origin_target_size (list): origin target size of image
- target_size (list): A list of target sizes of image.
- interp (int): the interpolation method.
- use_flip (bool): whether use flip augmentation.
- """
- super(MultiscaleTestResize, self).__init__()
- self.interp = interp
- self.use_flip = use_flip
- if not isinstance(target_size, Sequence):
- raise TypeError(
- "Type of target_size is invalid. Must be List or Tuple, now is {}".
- format(type(target_size)))
- self.target_size = target_size
- if not isinstance(origin_target_size, Sequence):
- raise TypeError(
- "Type of origin_target_size is invalid. Must be List or Tuple, now is {}".
- format(type(origin_target_size)))
- self.origin_target_size = origin_target_size
- def apply(self, sample, context=None):
- """ Resize the image numpy for multi-scale test.
- """
- samples = []
- resizer = Resize(
- self.origin_target_size, keep_ratio=True, interp=self.interp)
- samples.append(resizer(sample.copy(), context))
- if self.use_flip:
- flipper = RandomFlip(1.1)
- samples.append(flipper(sample.copy(), context=context))
- for size in self.target_size:
- resizer = Resize(size, keep_ratio=True, interp=self.interp)
- samples.append(resizer(sample.copy(), context))
- return samples
- @register_op
- class RandomResize(BaseOperator):
- def __init__(self,
- target_size,
- keep_ratio=True,
- interp=cv2.INTER_LINEAR,
- random_range=False,
- random_size=True,
- random_interp=False):
- """
- Resize image to target size randomly. random target_size and interpolation method
- Args:
- target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
- keep_ratio (bool): whether keep_raio or not, default true
- interp (int): the interpolation method
- random_range (bool): whether random select target size of image, the target_size must be
- a [[min_short_edge, long_edge], [max_short_edge, long_edge]]
- random_size (bool): whether random select target size of image
- random_interp (bool): whether random select interpolation method
- """
- super(RandomResize, self).__init__()
- self.keep_ratio = keep_ratio
- self.interp = interp
- self.interps = [
- cv2.INTER_NEAREST,
- cv2.INTER_LINEAR,
- cv2.INTER_AREA,
- cv2.INTER_CUBIC,
- cv2.INTER_LANCZOS4,
- ]
- assert isinstance(target_size, (
- Integral, Sequence)), "target_size must be Integer, List or Tuple"
- if (random_range or random_size) and not isinstance(target_size,
- Sequence):
- raise TypeError(
- "Type of target_size is invalid when random_size or random_range is True. Must be List or Tuple, now is {}".
- format(type(target_size)))
- if random_range and not len(target_size) == 2:
- raise TypeError(
- "target_size must be two list as [[min_short_edge, long_edge], [max_short_edge, long_edge]] when random_range is True."
- )
- self.target_size = target_size
- self.random_range = random_range
- self.random_size = random_size
- self.random_interp = random_interp
- def apply(self, sample, context=None):
- """ Resize the image numpy.
- """
- if self.random_range:
- short_edge = np.random.randint(self.target_size[0][0],
- self.target_size[1][0] + 1)
- long_edge = max(self.target_size[0][1], self.target_size[1][1] + 1)
- target_size = [short_edge, long_edge]
- else:
- if self.random_size:
- target_size = random.choice(self.target_size)
- else:
- target_size = self.target_size
- if self.random_interp:
- interp = random.choice(self.interps)
- else:
- interp = self.interp
- resizer = Resize(target_size, self.keep_ratio, interp)
- return resizer(sample, context=context)
- @register_op
- class RandomExpand(BaseOperator):
- """Random expand the canvas.
- Args:
- ratio (float): maximum expansion ratio.
- prob (float): probability to expand.
- fill_value (list): color value used to fill the canvas. in RGB order.
- """
- def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)):
- super(RandomExpand, self).__init__()
- assert ratio > 1.01, "expand ratio must be larger than 1.01"
- self.ratio = ratio
- self.prob = prob
- assert isinstance(fill_value, (Number, Sequence)), \
- "fill value must be either float or sequence"
- if isinstance(fill_value, Number):
- fill_value = (fill_value, ) * 3
- if not isinstance(fill_value, tuple):
- fill_value = tuple(fill_value)
- self.fill_value = fill_value
- def apply(self, sample, context=None):
- if np.random.uniform(0., 1.) < self.prob:
- return sample
- im = sample['image']
- height, width = im.shape[:2]
- ratio = np.random.uniform(1., self.ratio)
- h = int(height * ratio)
- w = int(width * ratio)
- if not h > height or not w > width:
- return sample
- y = np.random.randint(0, h - height)
- x = np.random.randint(0, w - width)
- offsets, size = [x, y], [h, w]
- pad = Pad(size,
- pad_mode=-1,
- offsets=offsets,
- fill_value=self.fill_value)
- return pad(sample, context=context)
- @register_op
- class CropWithSampling(BaseOperator):
- def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
- """
- Args:
- batch_sampler (list): Multiple sets of different
- parameters for cropping.
- satisfy_all (bool): whether all boxes must satisfy.
- e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
- [max sample, max trial, min scale, max scale,
- min aspect ratio, max aspect ratio,
- min overlap, max overlap]
- avoid_no_bbox (bool): whether to avoid the
- situation where the box does not appear.
- """
- super(CropWithSampling, self).__init__()
- self.batch_sampler = batch_sampler
- self.satisfy_all = satisfy_all
- self.avoid_no_bbox = avoid_no_bbox
- def apply(self, sample, context):
- """
- Crop the image and modify bounding box.
- Operators:
- 1. Scale the image width and height.
- 2. Crop the image according to a radom sample.
- 3. Rescale the bounding box.
- 4. Determine if the new bbox is satisfied in the new image.
- Returns:
- sample: the image, bounding box are replaced.
- """
- assert 'image' in sample, "image data not found"
- im = sample['image']
- gt_bbox = sample['gt_bbox']
- gt_class = sample['gt_class']
- im_height, im_width = im.shape[:2]
- gt_score = None
- if 'gt_score' in sample:
- gt_score = sample['gt_score']
- sampled_bbox = []
- gt_bbox = gt_bbox.tolist()
- for sampler in self.batch_sampler:
- found = 0
- for i in range(sampler[1]):
- if found >= sampler[0]:
- break
- sample_bbox = generate_sample_bbox(sampler)
- if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
- self.satisfy_all):
- sampled_bbox.append(sample_bbox)
- found = found + 1
- im = np.array(im)
- while sampled_bbox:
- idx = int(np.random.uniform(0, len(sampled_bbox)))
- sample_bbox = sampled_bbox.pop(idx)
- sample_bbox = clip_bbox(sample_bbox)
- crop_bbox, crop_class, crop_score = \
- filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score)
- if self.avoid_no_bbox:
- if len(crop_bbox) < 1:
- continue
- xmin = int(sample_bbox[0] * im_width)
- xmax = int(sample_bbox[2] * im_width)
- ymin = int(sample_bbox[1] * im_height)
- ymax = int(sample_bbox[3] * im_height)
- im = im[ymin:ymax, xmin:xmax]
- sample['image'] = im
- sample['gt_bbox'] = crop_bbox
- sample['gt_class'] = crop_class
- sample['gt_score'] = crop_score
- return sample
- return sample
- @register_op
- class CropWithDataAchorSampling(BaseOperator):
- def __init__(self,
- batch_sampler,
- anchor_sampler=None,
- target_size=None,
- das_anchor_scales=[16, 32, 64, 128],
- sampling_prob=0.5,
- min_size=8.,
- avoid_no_bbox=True):
- """
- Args:
- anchor_sampler (list): anchor_sampling sets of different
- parameters for cropping.
- batch_sampler (list): Multiple sets of different
- parameters for cropping.
- e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
- [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
- [max sample, max trial, min scale, max scale,
- min aspect ratio, max aspect ratio,
- min overlap, max overlap, min coverage, max coverage]
- target_size (int): target image size.
- das_anchor_scales (list[float]): a list of anchor scales in data
- anchor smapling.
- min_size (float): minimum size of sampled bbox.
- avoid_no_bbox (bool): whether to avoid the
- situation where the box does not appear.
- """
- super(CropWithDataAchorSampling, self).__init__()
- self.anchor_sampler = anchor_sampler
- self.batch_sampler = batch_sampler
- self.target_size = target_size
- self.sampling_prob = sampling_prob
- self.min_size = min_size
- self.avoid_no_bbox = avoid_no_bbox
- self.das_anchor_scales = np.array(das_anchor_scales)
- def apply(self, sample, context):
- """
- Crop the image and modify bounding box.
- Operators:
- 1. Scale the image width and height.
- 2. Crop the image according to a radom sample.
- 3. Rescale the bounding box.
- 4. Determine if the new bbox is satisfied in the new image.
- Returns:
- sample: the image, bounding box are replaced.
- """
- assert 'image' in sample, "image data not found"
- im = sample['image']
- gt_bbox = sample['gt_bbox']
- gt_class = sample['gt_class']
- image_height, image_width = im.shape[:2]
- gt_bbox[:, 0] /= image_width
- gt_bbox[:, 1] /= image_height
- gt_bbox[:, 2] /= image_width
- gt_bbox[:, 3] /= image_height
- gt_score = None
- if 'gt_score' in sample:
- gt_score = sample['gt_score']
- sampled_bbox = []
- gt_bbox = gt_bbox.tolist()
- prob = np.random.uniform(0., 1.)
- if prob > self.sampling_prob: # anchor sampling
- assert self.anchor_sampler
- for sampler in self.anchor_sampler:
- found = 0
- for i in range(sampler[1]):
- if found >= sampler[0]:
- break
- sample_bbox = data_anchor_sampling(
- gt_bbox, image_width, image_height,
- self.das_anchor_scales, self.target_size)
- if sample_bbox == 0:
- break
- if satisfy_sample_constraint_coverage(sampler, sample_bbox,
- gt_bbox):
- sampled_bbox.append(sample_bbox)
- found = found + 1
- im = np.array(im)
- while sampled_bbox:
- idx = int(np.random.uniform(0, len(sampled_bbox)))
- sample_bbox = sampled_bbox.pop(idx)
- if 'gt_keypoint' in sample.keys():
- keypoints = (sample['gt_keypoint'],
- sample['keypoint_ignore'])
- crop_bbox, crop_class, crop_score, gt_keypoints = \
- filter_and_process(sample_bbox, gt_bbox, gt_class,
- scores=gt_score,
- keypoints=keypoints)
- else:
- crop_bbox, crop_class, crop_score = filter_and_process(
- sample_bbox, gt_bbox, gt_class, scores=gt_score)
- crop_bbox, crop_class, crop_score = bbox_area_sampling(
- crop_bbox, crop_class, crop_score, self.target_size,
- self.min_size)
- if self.avoid_no_bbox:
- if len(crop_bbox) < 1:
- continue
- im = crop_image_sampling(im, sample_bbox, image_width,
- image_height, self.target_size)
- height, width = im.shape[:2]
- crop_bbox[:, 0] *= width
- crop_bbox[:, 1] *= height
- crop_bbox[:, 2] *= width
- crop_bbox[:, 3] *= height
- sample['image'] = im
- sample['gt_bbox'] = crop_bbox
- sample['gt_class'] = crop_class
- if 'gt_score' in sample:
- sample['gt_score'] = crop_score
- if 'gt_keypoint' in sample.keys():
- sample['gt_keypoint'] = gt_keypoints[0]
- sample['keypoint_ignore'] = gt_keypoints[1]
- return sample
- return sample
- else:
- for sampler in self.batch_sampler:
- found = 0
- for i in range(sampler[1]):
- if found >= sampler[0]:
- break
- sample_bbox = generate_sample_bbox_square(
- sampler, image_width, image_height)
- if satisfy_sample_constraint_coverage(sampler, sample_bbox,
- gt_bbox):
- sampled_bbox.append(sample_bbox)
- found = found + 1
- im = np.array(im)
- while sampled_bbox:
- idx = int(np.random.uniform(0, len(sampled_bbox)))
- sample_bbox = sampled_bbox.pop(idx)
- sample_bbox = clip_bbox(sample_bbox)
- if 'gt_keypoint' in sample.keys():
- keypoints = (sample['gt_keypoint'],
- sample['keypoint_ignore'])
- crop_bbox, crop_class, crop_score, gt_keypoints = \
- filter_and_process(sample_bbox, gt_bbox, gt_class,
- scores=gt_score,
- keypoints=keypoints)
- else:
- crop_bbox, crop_class, crop_score = filter_and_process(
- sample_bbox, gt_bbox, gt_class, scores=gt_score)
- # sampling bbox according the bbox area
- crop_bbox, crop_class, crop_score = bbox_area_sampling(
- crop_bbox, crop_class, crop_score, self.target_size,
- self.min_size)
- if self.avoid_no_bbox:
- if len(crop_bbox) < 1:
- continue
- xmin = int(sample_bbox[0] * image_width)
- xmax = int(sample_bbox[2] * image_width)
- ymin = int(sample_bbox[1] * image_height)
- ymax = int(sample_bbox[3] * image_height)
- im = im[ymin:ymax, xmin:xmax]
- height, width = im.shape[:2]
- crop_bbox[:, 0] *= width
- crop_bbox[:, 1] *= height
- crop_bbox[:, 2] *= width
- crop_bbox[:, 3] *= height
- sample['image'] = im
- sample['gt_bbox'] = crop_bbox
- sample['gt_class'] = crop_class
- if 'gt_score' in sample:
- sample['gt_score'] = crop_score
- if 'gt_keypoint' in sample.keys():
- sample['gt_keypoint'] = gt_keypoints[0]
- sample['keypoint_ignore'] = gt_keypoints[1]
- return sample
- return sample
- @register_op
- class RandomCrop(BaseOperator):
- """Random crop image and bboxes.
- Args:
- aspect_ratio (list): aspect ratio of cropped region.
- in [min, max] format.
- thresholds (list): iou thresholds for decide a valid bbox crop.
- scaling (list): ratio between a cropped region and the original image.
- in [min, max] format.
- num_attempts (int): number of tries before giving up.
- allow_no_crop (bool): allow return without actually cropping them.
- cover_all_box (bool): ensure all bboxes are covered in the final crop.
- is_mask_crop(bool): whether crop the segmentation.
- """
- def __init__(self,
- aspect_ratio=[.5, 2.],
- thresholds=[.0, .1, .3, .5, .7, .9],
- scaling=[.3, 1.],
- num_attempts=50,
- allow_no_crop=True,
- cover_all_box=False,
- is_mask_crop=False):
- super(RandomCrop, self).__init__()
- self.aspect_ratio = aspect_ratio
- self.thresholds = thresholds
- self.scaling = scaling
- self.num_attempts = num_attempts
- self.allow_no_crop = allow_no_crop
- self.cover_all_box = cover_all_box
- self.is_mask_crop = is_mask_crop
- def crop_segms(self, segms, valid_ids, crop, height, width):
- def _crop_poly(segm, crop):
- xmin, ymin, xmax, ymax = crop
- crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
- crop_p = np.array(crop_coord).reshape(4, 2)
- crop_p = Polygon(crop_p)
- crop_segm = list()
- for poly in segm:
- poly = np.array(poly).reshape(len(poly) // 2, 2)
- polygon = Polygon(poly)
- if not polygon.is_valid:
- exterior = polygon.exterior
- multi_lines = exterior.intersection(exterior)
- polygons = shapely.ops.polygonize(multi_lines)
- polygon = MultiPolygon(polygons)
- multi_polygon = list()
- if isinstance(polygon, MultiPolygon):
- multi_polygon = copy.deepcopy(polygon)
- else:
- multi_polygon.append(copy.deepcopy(polygon))
- for per_polygon in multi_polygon:
- inter = per_polygon.intersection(crop_p)
- if not inter:
- continue
- if isinstance(inter, (MultiPolygon, GeometryCollection)):
- for part in inter:
- if not isinstance(part, Polygon):
- continue
- part = np.squeeze(
- np.array(part.exterior.coords[:-1]).reshape(1,
- -1))
- part[0::2] -= xmin
- part[1::2] -= ymin
- crop_segm.append(part.tolist())
- elif isinstance(inter, Polygon):
- crop_poly = np.squeeze(
- np.array(inter.exterior.coords[:-1]).reshape(1, -1))
- crop_poly[0::2] -= xmin
- crop_poly[1::2] -= ymin
- crop_segm.append(crop_poly.tolist())
- else:
- continue
- return crop_segm
- def _crop_rle(rle, crop, height, width):
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- crop_segms = []
- for id in valid_ids:
- segm = segms[id]
- if is_poly(segm):
- import copy
- import shapely.ops
- from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
- logging.getLogger("shapely").setLevel(logging.WARNING)
- # Polygon format
- crop_segms.append(_crop_poly(segm, crop))
- else:
- # RLE format
- import pycocotools.mask as mask_util
- crop_segms.append(_crop_rle(segm, crop, height, width))
- return crop_segms
- def apply(self, sample, context=None):
- if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
- return sample
- h, w = sample['image'].shape[:2]
- gt_bbox = sample['gt_bbox']
- # NOTE Original method attempts to generate one candidate for each
- # threshold then randomly sample one from the resulting list.
- # Here a short circuit approach is taken, i.e., randomly choose a
- # threshold and attempt to find a valid crop, and simply return the
- # first one found.
- # The probability is not exactly the same, kinda resembling the
- # "Monty Hall" problem. Actually carrying out the attempts will affect
- # observability (just like opening doors in the "Monty Hall" game).
- thresholds = list(self.thresholds)
- if self.allow_no_crop:
- thresholds.append('no_crop')
- np.random.shuffle(thresholds)
- for thresh in thresholds:
- if thresh == 'no_crop':
- return sample
- found = False
- for i in range(self.num_attempts):
- scale = np.random.uniform(*self.scaling)
- if self.aspect_ratio is not None:
- min_ar, max_ar = self.aspect_ratio
- aspect_ratio = np.random.uniform(
- max(min_ar, scale**2), min(max_ar, scale**-2))
- h_scale = scale / np.sqrt(aspect_ratio)
- w_scale = scale * np.sqrt(aspect_ratio)
- else:
- h_scale = np.random.uniform(*self.scaling)
- w_scale = np.random.uniform(*self.scaling)
- crop_h = h * h_scale
- crop_w = w * w_scale
- if self.aspect_ratio is None:
- if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
- continue
- crop_h = int(crop_h)
- crop_w = int(crop_w)
- crop_y = np.random.randint(0, h - crop_h)
- crop_x = np.random.randint(0, w - crop_w)
- crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
- iou = self._iou_matrix(
- gt_bbox, np.array(
- [crop_box], dtype=np.float32))
- if iou.max() < thresh:
- continue
- if self.cover_all_box and iou.min() < thresh:
- continue
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
- gt_bbox, np.array(
- crop_box, dtype=np.float32))
- if valid_ids.size > 0:
- found = True
- break
- if found:
- if self.is_mask_crop and 'gt_poly' in sample and len(sample[
- 'gt_poly']) > 0:
- crop_polys = self.crop_segms(
- sample['gt_poly'],
- valid_ids,
- np.array(
- crop_box, dtype=np.int64),
- h,
- w)
- if [] in crop_polys:
- delete_id = list()
- valid_polys = list()
- for id, crop_poly in enumerate(crop_polys):
- if crop_poly == []:
- delete_id.append(id)
- else:
- valid_polys.append(crop_poly)
- valid_ids = np.delete(valid_ids, delete_id)
- if len(valid_polys) == 0:
- return sample
- sample['gt_poly'] = valid_polys
- else:
- sample['gt_poly'] = crop_polys
- if 'gt_segm' in sample:
- sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
- crop_box)
- sample['gt_segm'] = np.take(
- sample['gt_segm'], valid_ids, axis=0)
- sample['image'] = self._crop_image(sample['image'], crop_box)
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
- sample['gt_class'] = np.take(
- sample['gt_class'], valid_ids, axis=0)
- if 'gt_score' in sample:
- sample['gt_score'] = np.take(
- sample['gt_score'], valid_ids, axis=0)
- if 'is_crowd' in sample:
- sample['is_crowd'] = np.take(
- sample['is_crowd'], valid_ids, axis=0)
- if 'difficult' in sample:
- sample['difficult'] = np.take(
- sample['difficult'], valid_ids, axis=0)
- return sample
- return sample
- def _iou_matrix(self, a, b):
- tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
- br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
- area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
- area_o = (area_a[:, np.newaxis] + area_b - area_i)
- return area_i / (area_o + 1e-10)
- def _crop_box_with_center_constraint(self, box, crop):
- cropped_box = box.copy()
- cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
- cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
- cropped_box[:, :2] -= crop[:2]
- cropped_box[:, 2:] -= crop[:2]
- centers = (box[:, :2] + box[:, 2:]) / 2
- valid = np.logical_and(crop[:2] <= centers,
- centers < crop[2:]).all(axis=1)
- valid = np.logical_and(
- valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
- return cropped_box, np.where(valid)[0]
- def _crop_image(self, img, crop):
- x1, y1, x2, y2 = crop
- return img[y1:y2, x1:x2, :]
- def _crop_segm(self, segm, crop):
- x1, y1, x2, y2 = crop
- return segm[:, y1:y2, x1:x2]
- @register_op
- class RandomScaledCrop(BaseOperator):
- """Resize image and bbox based on long side (with optional random scaling),
- then crop or pad image to target size.
- Args:
- target_dim (int): target size.
- scale_range (list): random scale range.
- interp (int): interpolation method, default to `cv2.INTER_LINEAR`.
- """
- def __init__(self,
- target_dim=512,
- scale_range=[.1, 2.],
- interp=cv2.INTER_LINEAR):
- super(RandomScaledCrop, self).__init__()
- self.target_dim = target_dim
- self.scale_range = scale_range
- self.interp = interp
- def apply(self, sample, context=None):
- img = sample['image']
- h, w = img.shape[:2]
- random_scale = np.random.uniform(*self.scale_range)
- dim = self.target_dim
- random_dim = int(dim * random_scale)
- dim_max = max(h, w)
- scale = random_dim / dim_max
- resize_w = w * scale
- resize_h = h * scale
- offset_x = int(max(0, np.random.uniform(0., resize_w - dim)))
- offset_y = int(max(0, np.random.uniform(0., resize_h - dim)))
- img = cv2.resize(img, (resize_w, resize_h), interpolation=self.interp)
- img = np.array(img)
- canvas = np.zeros((dim, dim, 3), dtype=img.dtype)
- canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[
- offset_y:offset_y + dim, offset_x:offset_x + dim, :]
- sample['image'] = canvas
- sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
- scale_factor = sample['sacle_factor']
- sample['scale_factor'] = np.asarray(
- [scale_factor[0] * scale, scale_factor[1] * scale],
- dtype=np.float32)
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- scale_array = np.array([scale, scale] * 2, dtype=np.float32)
- shift_array = np.array([offset_x, offset_y] * 2, dtype=np.float32)
- boxes = sample['gt_bbox'] * scale_array - shift_array
- boxes = np.clip(boxes, 0, dim - 1)
- # filter boxes with no area
- area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1)
- valid = (area > 1.).nonzero()[0]
- sample['gt_bbox'] = boxes[valid]
- sample['gt_class'] = sample['gt_class'][valid]
- return sample
- @register_op
- class Cutmix(BaseOperator):
- def __init__(self, alpha=1.5, beta=1.5):
- """
- CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899
- Cutmix image and gt_bbbox/gt_score
- Args:
- alpha (float): alpha parameter of beta distribute
- beta (float): beta parameter of beta distribute
- """
- super(Cutmix, self).__init__()
- self.alpha = alpha
- self.beta = beta
- if self.alpha <= 0.0:
- raise ValueError("alpha shold be positive in {}".format(self))
- if self.beta <= 0.0:
- raise ValueError("beta shold be positive in {}".format(self))
- def apply_image(self, img1, img2, factor):
- """ _rand_bbox """
- h = max(img1.shape[0], img2.shape[0])
- w = max(img1.shape[1], img2.shape[1])
- cut_rat = np.sqrt(1. - factor)
- cut_w = np.int32(w * cut_rat)
- cut_h = np.int32(h * cut_rat)
- # uniform
- cx = np.random.randint(w)
- cy = np.random.randint(h)
- bbx1 = np.clip(cx - cut_w // 2, 0, w - 1)
- bby1 = np.clip(cy - cut_h // 2, 0, h - 1)
- bbx2 = np.clip(cx + cut_w // 2, 0, w - 1)
- bby2 = np.clip(cy + cut_h // 2, 0, h - 1)
- img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32')
- img_1_pad[:img1.shape[0], :img1.shape[1], :] = \
- img1.astype('float32')
- img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32')
- img_2_pad[:img2.shape[0], :img2.shape[1], :] = \
- img2.astype('float32')
- img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :]
- return img_1_pad
- def __call__(self, sample, context=None):
- if not isinstance(sample, Sequence):
- return sample
- assert len(sample) == 2, 'cutmix need two samples'
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if factor >= 1.0:
- return sample[0]
- if factor <= 0.0:
- return sample[1]
- img1 = sample[0]['image']
- img2 = sample[1]['image']
- img = self.apply_image(img1, img2, factor)
- gt_bbox1 = sample[0]['gt_bbox']
- gt_bbox2 = sample[1]['gt_bbox']
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- gt_class1 = sample[0]['gt_class']
- gt_class2 = sample[1]['gt_class']
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- gt_score1 = np.ones_like(sample[0]['gt_class'])
- gt_score2 = np.ones_like(sample[1]['gt_class'])
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- result = copy.deepcopy(sample[0])
- result['image'] = img
- result['gt_bbox'] = gt_bbox
- result['gt_score'] = gt_score
- result['gt_class'] = gt_class
- if 'is_crowd' in sample[0]:
- is_crowd1 = sample[0]['is_crowd']
- is_crowd2 = sample[1]['is_crowd']
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
- result['is_crowd'] = is_crowd
- if 'difficult' in sample[0]:
- is_difficult1 = sample[0]['difficult']
- is_difficult2 = sample[1]['difficult']
- is_difficult = np.concatenate(
- (is_difficult1, is_difficult2), axis=0)
- result['difficult'] = is_difficult
- return result
- @register_op
- class Mixup(BaseOperator):
- def __init__(self, alpha=1.5, beta=1.5):
- """ Mixup image and gt_bbbox/gt_score
- Args:
- alpha (float): alpha parameter of beta distribute
- beta (float): beta parameter of beta distribute
- """
- super(Mixup, self).__init__()
- self.alpha = alpha
- self.beta = beta
- if self.alpha <= 0.0:
- raise ValueError("alpha shold be positive in {}".format(self))
- if self.beta <= 0.0:
- raise ValueError("beta shold be positive in {}".format(self))
- def apply_image(self, img1, img2, factor):
- h = max(img1.shape[0], img2.shape[0])
- w = max(img1.shape[1], img2.shape[1])
- img = np.zeros((h, w, img1.shape[2]), 'float32')
- img[:img1.shape[0], :img1.shape[1], :] = \
- img1.astype('float32') * factor
- img[:img2.shape[0], :img2.shape[1], :] += \
- img2.astype('float32') * (1.0 - factor)
- return img.astype('uint8')
- def __call__(self, sample, context=None):
- if not isinstance(sample, Sequence):
- return sample
- assert len(sample) == 2, 'mixup need two samples'
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if factor >= 1.0:
- return sample[0]
- if factor <= 0.0:
- return sample[1]
- im = self.apply_image(sample[0]['image'], sample[1]['image'], factor)
- result = copy.deepcopy(sample[0])
- result['image'] = im
- # apply bbox and score
- if 'gt_bbox' in sample[0]:
- gt_bbox1 = sample[0]['gt_bbox']
- gt_bbox2 = sample[1]['gt_bbox']
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- result['gt_bbox'] = gt_bbox
- if 'gt_class' in sample[0]:
- gt_class1 = sample[0]['gt_class']
- gt_class2 = sample[1]['gt_class']
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- result['gt_class'] = gt_class
- gt_score1 = np.ones_like(sample[0]['gt_class'])
- gt_score2 = np.ones_like(sample[1]['gt_class'])
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- result['gt_score'] = gt_score.astype('float32')
- if 'is_crowd' in sample[0]:
- is_crowd1 = sample[0]['is_crowd']
- is_crowd2 = sample[1]['is_crowd']
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
- result['is_crowd'] = is_crowd
- if 'difficult' in sample[0]:
- is_difficult1 = sample[0]['difficult']
- is_difficult2 = sample[1]['difficult']
- is_difficult = np.concatenate(
- (is_difficult1, is_difficult2), axis=0)
- result['difficult'] = is_difficult
- if 'gt_ide' in sample[0]:
- gt_ide1 = sample[0]['gt_ide']
- gt_ide2 = sample[1]['gt_ide']
- gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0)
- result['gt_ide'] = gt_ide
- return result
- @register_op
- class NormalizeBox(BaseOperator):
- """Transform the bounding box's coornidates to [0,1]."""
- def __init__(self):
- super(NormalizeBox, self).__init__()
- def apply(self, sample, context):
- im = sample['image']
- gt_bbox = sample['gt_bbox']
- height, width, _ = im.shape
- for i in range(gt_bbox.shape[0]):
- gt_bbox[i][0] = gt_bbox[i][0] / width
- gt_bbox[i][1] = gt_bbox[i][1] / height
- gt_bbox[i][2] = gt_bbox[i][2] / width
- gt_bbox[i][3] = gt_bbox[i][3] / height
- sample['gt_bbox'] = gt_bbox
- if 'gt_keypoint' in sample.keys():
- gt_keypoint = sample['gt_keypoint']
- for i in range(gt_keypoint.shape[1]):
- if i % 2:
- gt_keypoint[:, i] = gt_keypoint[:, i] / height
- else:
- gt_keypoint[:, i] = gt_keypoint[:, i] / width
- sample['gt_keypoint'] = gt_keypoint
- return sample
- @register_op
- class BboxXYXY2XYWH(BaseOperator):
- """
- Convert bbox XYXY format to XYWH format.
- """
- def __init__(self):
- super(BboxXYXY2XYWH, self).__init__()
- def apply(self, sample, context=None):
- assert 'gt_bbox' in sample
- bbox = sample['gt_bbox']
- bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
- bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
- sample['gt_bbox'] = bbox
- return sample
- @register_op
- class PadBox(BaseOperator):
- def __init__(self, num_max_boxes=50):
- """
- Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
- Args:
- num_max_boxes (int): the max number of bboxes
- """
- self.num_max_boxes = num_max_boxes
- super(PadBox, self).__init__()
- def apply(self, sample, context=None):
- assert 'gt_bbox' in sample
- bbox = sample['gt_bbox']
- gt_num = min(self.num_max_boxes, len(bbox))
- num_max = self.num_max_boxes
- # fields = context['fields'] if context else []
- pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
- if gt_num > 0:
- pad_bbox[:gt_num, :] = bbox[:gt_num, :]
- sample['gt_bbox'] = pad_bbox
- if 'gt_class' in sample:
- pad_class = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
- sample['gt_class'] = pad_class
- if 'gt_score' in sample:
- pad_score = np.zeros((num_max, ), dtype=np.float32)
- if gt_num > 0:
- pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
- sample['gt_score'] = pad_score
- # in training, for example in op ExpandImage,
- # the bbox and gt_class is expandded, but the difficult is not,
- # so, judging by it's length
- if 'difficult' in sample:
- pad_diff = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
- sample['difficult'] = pad_diff
- if 'is_crowd' in sample:
- pad_crowd = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
- sample['is_crowd'] = pad_crowd
- if 'gt_ide' in sample:
- pad_ide = np.zeros((num_max, ), dtype=np.int32)
- if gt_num > 0:
- pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
- sample['gt_ide'] = pad_ide
- return sample
- @register_op
- class DebugVisibleImage(BaseOperator):
- """
- In debug mode, visualize images according to `gt_box`.
- (Currently only supported when not cropping and flipping image.)
- """
- def __init__(self, output_dir='output/debug', is_normalized=False):
- super(DebugVisibleImage, self).__init__()
- self.is_normalized = is_normalized
- self.output_dir = output_dir
- if not os.path.isdir(output_dir):
- os.makedirs(output_dir)
- if not isinstance(self.is_normalized, bool):
- raise TypeError("{}: input type is invalid.".format(self))
- def apply(self, sample, context=None):
- image = Image.fromarray(sample['image'].astype(np.uint8))
- out_file_name = '{:012d}.jpg'.format(sample['im_id'][0])
- width = sample['w']
- height = sample['h']
- gt_bbox = sample['gt_bbox']
- gt_class = sample['gt_class']
- draw = ImageDraw.Draw(image)
- for i in range(gt_bbox.shape[0]):
- if self.is_normalized:
- gt_bbox[i][0] = gt_bbox[i][0] * width
- gt_bbox[i][1] = gt_bbox[i][1] * height
- gt_bbox[i][2] = gt_bbox[i][2] * width
- gt_bbox[i][3] = gt_bbox[i][3] * height
- xmin, ymin, xmax, ymax = gt_bbox[i]
- draw.line(
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
- (xmin, ymin)],
- width=2,
- fill='green')
- # draw label
- text = str(gt_class[i][0])
- tw, th = draw.textsize(text)
- draw.rectangle(
- [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
- draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
- if 'gt_keypoint' in sample.keys():
- gt_keypoint = sample['gt_keypoint']
- if self.is_normalized:
- for i in range(gt_keypoint.shape[1]):
- if i % 2:
- gt_keypoint[:, i] = gt_keypoint[:, i] * height
- else:
- gt_keypoint[:, i] = gt_keypoint[:, i] * width
- for i in range(gt_keypoint.shape[0]):
- keypoint = gt_keypoint[i]
- for j in range(int(keypoint.shape[0] / 2)):
- x1 = round(keypoint[2 * j]).astype(np.int32)
- y1 = round(keypoint[2 * j + 1]).astype(np.int32)
- draw.ellipse(
- (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
- save_path = os.path.join(self.output_dir, out_file_name)
- image.save(save_path, quality=95)
- return sample
- @register_op
- class Pad(BaseOperator):
- def __init__(self,
- size=None,
- size_divisor=32,
- pad_mode=0,
- offsets=None,
- fill_value=(127.5, 127.5, 127.5)):
- """
- Pad image to a specified size or multiple of size_divisor.
- Args:
- size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
- size_divisor (int): size divisor, default 32
- pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
- if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
- offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
- fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
- """
- super(Pad, self).__init__()
- if not isinstance(size, (int, Sequence)):
- raise TypeError(
- "Type of target_size is invalid when random_size is True. \
- Must be List, now is {}".format(type(size)))
- if isinstance(size, int):
- size = [size, size]
- assert pad_mode in [
- -1, 0, 1, 2
- ], 'currently only supports four modes [-1, 0, 1, 2]'
- if pad_mode == -1:
- assert offsets, 'if pad_mode is -1, offsets should not be None'
- self.size = size
- self.size_divisor = size_divisor
- self.pad_mode = pad_mode
- self.fill_value = fill_value
- self.offsets = offsets
- def apply_segm(self, segms, offsets, im_size, size):
- def _expand_poly(poly, x, y):
- expanded_poly = np.array(poly)
- expanded_poly[0::2] += x
- expanded_poly[1::2] += y
- return expanded_poly.tolist()
- def _expand_rle(rle, x, y, height, width, h, w):
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- expanded_mask = np.full((h, w), 0).astype(mask.dtype)
- expanded_mask[y:y + height, x:x + width] = mask
- rle = mask_util.encode(
- np.array(
- expanded_mask, order='F', dtype=np.uint8))
- return rle
- x, y = offsets
- height, width = im_size
- h, w = size
- expanded_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- expanded_segms.append(
- [_expand_poly(poly, x, y) for poly in segm])
- else:
- # RLE format
- import pycocotools.mask as mask_util
- expanded_segms.append(
- _expand_rle(segm, x, y, height, width, h, w))
- return expanded_segms
- def apply_bbox(self, bbox, offsets):
- return bbox + np.array(offsets * 2, dtype=np.float32)
- def apply_keypoint(self, keypoints, offsets):
- n = len(keypoints[0]) // 2
- return keypoints + np.array(offsets * n, dtype=np.float32)
- def apply_image(self, image, offsets, im_size, size):
- x, y = offsets
- im_h, im_w = im_size
- h, w = size
- canvas = np.ones((h, w, 3), dtype=np.float32)
- canvas *= np.array(self.fill_value, dtype=np.float32)
- canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
- return canvas
- def apply(self, sample, context=None):
- im = sample['image']
- im_h, im_w = im.shape[:2]
- if self.size:
- h, w = self.size
- assert (
- im_h <= h and im_w <= w
- ), '(h, w) of target size should be greater than (im_h, im_w)'
- else:
- h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
- w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
- if h == im_h and w == im_w:
- sample['image'] = im.astype(np.float32)
- return sample
- if self.pad_mode == -1:
- offset_x, offset_y = self.offsets
- elif self.pad_mode == 0:
- offset_y, offset_x = 0, 0
- elif self.pad_mode == 1:
- offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
- else:
- offset_y, offset_x = h - im_h, w - im_w
- offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
- sample['image'] = self.apply_image(im, offsets, im_size, size)
- if self.pad_mode == 0:
- return sample
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets,
- im_size, size)
- if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
- sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'],
- offsets)
- return sample
- @register_op
- class Poly2Mask(BaseOperator):
- """
- gt poly to mask annotations
- """
- def __init__(self):
- super(Poly2Mask, self).__init__()
- import pycocotools.mask as maskUtils
- self.maskutils = maskUtils
- def _poly2mask(self, mask_ann, img_h, img_w):
- if isinstance(mask_ann, list):
- # polygon -- a single object might consist of multiple parts
- # we merge all parts into one mask rle code
- rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
- rle = self.maskutils.merge(rles)
- elif isinstance(mask_ann['counts'], list):
- # uncompressed RLE
- rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
- else:
- # rle
- rle = mask_ann
- mask = self.maskutils.decode(rle)
- return mask
- def apply(self, sample, context=None):
- assert 'gt_poly' in sample
- im_h = sample['h']
- im_w = sample['w']
- masks = [
- self._poly2mask(gt_poly, im_h, im_w)
- for gt_poly in sample['gt_poly']
- ]
- sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
- return sample
- @register_op
- class AugmentHSV(BaseOperator):
- """
- Augment the SV channel of image data.
- Args:
- fraction (float): the fraction for augment. Default: 0.5.
- is_bgr (bool): whether the image is BGR mode. Default: True.
- hgain (float): H channel gains
- sgain (float): S channel gains
- vgain (float): V channel gains
- """
- def __init__(self,
- fraction=0.50,
- is_bgr=True,
- hgain=None,
- sgain=None,
- vgain=None):
- super(AugmentHSV, self).__init__()
- self.fraction = fraction
- self.is_bgr = is_bgr
- self.hgain = hgain
- self.sgain = sgain
- self.vgain = vgain
- self.use_hsvgain = False if hgain is None else True
- def apply(self, sample, context=None):
- img = sample['image']
- if self.is_bgr:
- img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
- else:
- img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
- if self.use_hsvgain:
- hsv_augs = np.random.uniform(
- -1, 1, 3) * [self.hgain, self.sgain, self.vgain]
- # random selection of h, s, v
- hsv_augs *= np.random.randint(0, 2, 3)
- img_hsv[..., 0] = (img_hsv[..., 0] + hsv_augs[0]) % 180
- img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_augs[1], 0, 255)
- img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_augs[2], 0, 255)
- else:
- S = img_hsv[:, :, 1].astype(np.float32)
- V = img_hsv[:, :, 2].astype(np.float32)
- a = (random.random() * 2 - 1) * self.fraction + 1
- S *= a
- if a > 1:
- np.clip(S, a_min=0, a_max=255, out=S)
- a = (random.random() * 2 - 1) * self.fraction + 1
- V *= a
- if a > 1:
- np.clip(V, a_min=0, a_max=255, out=V)
- img_hsv[:, :, 1] = S.astype(np.uint8)
- img_hsv[:, :, 2] = V.astype(np.uint8)
- if self.is_bgr:
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
- else:
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img)
- sample['image'] = img.astype(np.float32)
- return sample
- @register_op
- class Norm2PixelBbox(BaseOperator):
- """
- Transform the bounding box's coornidates which is in [0,1] to pixels.
- """
- def __init__(self):
- super(Norm2PixelBbox, self).__init__()
- def apply(self, sample, context=None):
- assert 'gt_bbox' in sample
- bbox = sample['gt_bbox']
- height, width = sample['image'].shape[:2]
- bbox[:, 0::2] = bbox[:, 0::2] * width
- bbox[:, 1::2] = bbox[:, 1::2] * height
- sample['gt_bbox'] = bbox
- return sample
- @register_op
- class BboxCXCYWH2XYXY(BaseOperator):
- """
- Convert bbox CXCYWH format to XYXY format.
- [center_x, center_y, width, height] -> [x0, y0, x1, y1]
- """
- def __init__(self):
- super(BboxCXCYWH2XYXY, self).__init__()
- def apply(self, sample, context=None):
- assert 'gt_bbox' in sample
- bbox0 = sample['gt_bbox']
- bbox = bbox0.copy()
- bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2.
- bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2.
- sample['gt_bbox'] = bbox
- return sample
- @register_op
- class RandomResizeCrop(BaseOperator):
- """Random resize and crop image and bboxes.
- Args:
- resizes (list): resize image to one of resizes. if keep_ratio is True and mode is
- 'long', resize the image's long side to the maximum of target_size, if keep_ratio is
- True and mode is 'short', resize the image's short side to the minimum of target_size.
- cropsizes (list): crop sizes after resize, [(min_crop_1, max_crop_1), ...]
- mode (str): resize mode, `long` or `short`. Details see resizes.
- prob (float): probability of this op.
- keep_ratio (bool): whether keep_ratio or not, default true
- interp (int): the interpolation method
- thresholds (list): iou thresholds for decide a valid bbox crop.
- num_attempts (int): number of tries before giving up.
- allow_no_crop (bool): allow return without actually cropping them.
- cover_all_box (bool): ensure all bboxes are covered in the final crop.
- is_mask_crop(bool): whether crop the segmentation.
- """
- def __init__(
- self,
- resizes,
- cropsizes,
- prob=0.5,
- mode='short',
- keep_ratio=True,
- interp=cv2.INTER_LINEAR,
- num_attempts=3,
- cover_all_box=False,
- allow_no_crop=False,
- thresholds=[0.3, 0.5, 0.7],
- is_mask_crop=False, ):
- super(RandomResizeCrop, self).__init__()
- self.resizes = resizes
- self.cropsizes = cropsizes
- self.prob = prob
- self.mode = mode
- self.resizer = Resize(0, keep_ratio=keep_ratio, interp=interp)
- self.croper = RandomCrop(
- num_attempts=num_attempts,
- cover_all_box=cover_all_box,
- thresholds=thresholds,
- allow_no_crop=allow_no_crop,
- is_mask_crop=is_mask_crop)
- def _format_size(self, size):
- if isinstance(size, Integral):
- size = (size, size)
- return size
- def apply(self, sample, context=None):
- if random.random() < self.prob:
- _resize = self._format_size(random.choice(self.resizes))
- _cropsize = self._format_size(random.choice(self.cropsizes))
- sample = self._resize(
- self.resizer,
- sample,
- size=_resize,
- mode=self.mode,
- context=context)
- sample = self._random_crop(
- self.croper, sample, size=_cropsize, context=context)
- return sample
- @staticmethod
- def _random_crop(croper, sample, size, context=None):
- if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
- return sample
- self = croper
- h, w = sample['image'].shape[:2]
- gt_bbox = sample['gt_bbox']
- cropsize = size
- min_crop = min(cropsize)
- max_crop = max(cropsize)
- thresholds = list(self.thresholds)
- np.random.shuffle(thresholds)
- for thresh in thresholds:
- found = False
- for _ in range(self.num_attempts):
- crop_h = random.randint(min_crop, min(h, max_crop))
- crop_w = random.randint(min_crop, min(w, max_crop))
- crop_y = random.randint(0, h - crop_h)
- crop_x = random.randint(0, w - crop_w)
- crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
- iou = self._iou_matrix(
- gt_bbox, np.array(
- [crop_box], dtype=np.float32))
- if iou.max() < thresh:
- continue
- if self.cover_all_box and iou.min() < thresh:
- continue
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
- gt_bbox, np.array(
- crop_box, dtype=np.float32))
- if valid_ids.size > 0:
- found = True
- break
- if found:
- if self.is_mask_crop and 'gt_poly' in sample and len(sample[
- 'gt_poly']) > 0:
- crop_polys = self.crop_segms(
- sample['gt_poly'],
- valid_ids,
- np.array(
- crop_box, dtype=np.int64),
- h,
- w)
- if [] in crop_polys:
- delete_id = list()
- valid_polys = list()
- for id, crop_poly in enumerate(crop_polys):
- if crop_poly == []:
- delete_id.append(id)
- else:
- valid_polys.append(crop_poly)
- valid_ids = np.delete(valid_ids, delete_id)
- if len(valid_polys) == 0:
- return sample
- sample['gt_poly'] = valid_polys
- else:
- sample['gt_poly'] = crop_polys
- if 'gt_segm' in sample:
- sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
- crop_box)
- sample['gt_segm'] = np.take(
- sample['gt_segm'], valid_ids, axis=0)
- sample['image'] = self._crop_image(sample['image'], crop_box)
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
- sample['gt_class'] = np.take(
- sample['gt_class'], valid_ids, axis=0)
- if 'gt_score' in sample:
- sample['gt_score'] = np.take(
- sample['gt_score'], valid_ids, axis=0)
- if 'is_crowd' in sample:
- sample['is_crowd'] = np.take(
- sample['is_crowd'], valid_ids, axis=0)
- return sample
- return sample
- @staticmethod
- def _resize(resizer, sample, size, mode='short', context=None):
- self = resizer
- im = sample['image']
- target_size = size
- if not isinstance(im, np.ndarray):
- raise TypeError("{}: image type is not numpy.".format(self))
- if len(im.shape) != 3:
- raise ImageError('{}: image is not 3-dimensional.'.format(self))
- # apply image
- im_shape = im.shape
- if self.keep_ratio:
- im_size_min = np.min(im_shape[0:2])
- im_size_max = np.max(im_shape[0:2])
- target_size_min = np.min(target_size)
- target_size_max = np.max(target_size)
- if mode == 'long':
- im_scale = min(target_size_min / im_size_min,
- target_size_max / im_size_max)
- else:
- im_scale = max(target_size_min / im_size_min,
- target_size_max / im_size_max)
- resize_h = im_scale * float(im_shape[0])
- resize_w = im_scale * float(im_shape[1])
- im_scale_x = im_scale
- im_scale_y = im_scale
- else:
- resize_h, resize_w = target_size
- im_scale_y = resize_h / im_shape[0]
- im_scale_x = resize_w / im_shape[1]
- im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
- sample['image'] = im
- sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
- if 'scale_factor' in sample:
- scale_factor = sample['scale_factor']
- sample['scale_factor'] = np.asarray(
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
- dtype=np.float32)
- else:
- sample['scale_factor'] = np.asarray(
- [im_scale_y, im_scale_x], dtype=np.float32)
- # apply bbox
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
- [im_scale_x, im_scale_y],
- [resize_w, resize_h])
- # apply polygon
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
- [im_scale_x, im_scale_y])
- # apply semantic
- if 'semantic' in sample and sample['semantic']:
- semantic = sample['semantic']
- semantic = cv2.resize(
- semantic.astype('float32'),
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=self.interp)
- semantic = np.asarray(semantic).astype('int32')
- semantic = np.expand_dims(semantic, 0)
- sample['semantic'] = semantic
- # apply gt_segm
- if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
- masks = [
- cv2.resize(
- gt_segm,
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=cv2.INTER_NEAREST)
- for gt_segm in sample['gt_segm']
- ]
- sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
- return sample
- @register_op
- class RandomSelect(BaseOperator):
- """
- Randomly choose a transformation between transforms1 and transforms2,
- and the probability of choosing transforms1 is p.
- The code is based on https://github.com/facebookresearch/detr/blob/main/datasets/transforms.py
- """
- def __init__(self, transforms1, transforms2, p=0.5):
- super(RandomSelect, self).__init__()
- self.transforms1 = Compose(transforms1)
- self.transforms2 = Compose(transforms2)
- self.p = p
- def apply(self, sample, context=None):
- if random.random() < self.p:
- return self.transforms1(sample)
- return self.transforms2(sample)
- @register_op
- class RandomShortSideResize(BaseOperator):
- def __init__(self,
- short_side_sizes,
- max_size=None,
- interp=cv2.INTER_LINEAR,
- random_interp=False):
- """
- Resize the image randomly according to the short side. If max_size is not None,
- the long side is scaled according to max_size. The whole process will be keep ratio.
- Args:
- short_side_sizes (list|tuple): Image target short side size.
- max_size (int): The size of the longest side of image after resize.
- interp (int): The interpolation method.
- random_interp (bool): Whether random select interpolation method.
- """
- super(RandomShortSideResize, self).__init__()
- assert isinstance(short_side_sizes,
- Sequence), "short_side_sizes must be List or Tuple"
- self.short_side_sizes = short_side_sizes
- self.max_size = max_size
- self.interp = interp
- self.random_interp = random_interp
- self.interps = [
- cv2.INTER_NEAREST,
- cv2.INTER_LINEAR,
- cv2.INTER_AREA,
- cv2.INTER_CUBIC,
- cv2.INTER_LANCZOS4,
- ]
- def get_size_with_aspect_ratio(self, image_shape, size, max_size=None):
- h, w = image_shape
- if max_size is not None:
- min_original_size = float(min((w, h)))
- max_original_size = float(max((w, h)))
- if max_original_size / min_original_size * size > max_size:
- size = int(
- round(max_size * min_original_size / max_original_size))
- if (w <= h and w == size) or (h <= w and h == size):
- return (w, h)
- if w < h:
- ow = size
- oh = int(size * h / w)
- else:
- oh = size
- ow = int(size * w / h)
- return (ow, oh)
- def resize(self,
- sample,
- target_size,
- max_size=None,
- interp=cv2.INTER_LINEAR):
- im = sample['image']
- if not isinstance(im, np.ndarray):
- raise TypeError("{}: image type is not numpy.".format(self))
- if len(im.shape) != 3:
- raise ImageError('{}: image is not 3-dimensional.'.format(self))
- target_size = self.get_size_with_aspect_ratio(im.shape[:2], target_size,
- max_size)
- im_scale_y, im_scale_x = target_size[1] / im.shape[0], target_size[
- 0] / im.shape[1]
- sample['image'] = cv2.resize(im, target_size, interpolation=interp)
- sample['im_shape'] = np.asarray(target_size[::-1], dtype=np.float32)
- if 'scale_factor' in sample:
- scale_factor = sample['scale_factor']
- sample['scale_factor'] = np.asarray(
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
- dtype=np.float32)
- else:
- sample['scale_factor'] = np.asarray(
- [im_scale_y, im_scale_x], dtype=np.float32)
- # apply bbox
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(
- sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
- # apply polygon
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im.shape[:2],
- [im_scale_x, im_scale_y])
- # apply semantic
- if 'semantic' in sample and sample['semantic']:
- semantic = sample['semantic']
- semantic = cv2.resize(
- semantic.astype('float32'),
- target_size,
- interpolation=self.interp)
- semantic = np.asarray(semantic).astype('int32')
- semantic = np.expand_dims(semantic, 0)
- sample['semantic'] = semantic
- # apply gt_segm
- if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
- masks = [
- cv2.resize(
- gt_segm, target_size, interpolation=cv2.INTER_NEAREST)
- for gt_segm in sample['gt_segm']
- ]
- sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
- return sample
- def apply_bbox(self, bbox, scale, size):
- im_scale_x, im_scale_y = scale
- resize_w, resize_h = size
- bbox[:, 0::2] *= im_scale_x
- bbox[:, 1::2] *= im_scale_y
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
- return bbox.astype('float32')
- def apply_segm(self, segms, im_size, scale):
- def _resize_poly(poly, im_scale_x, im_scale_y):
- resized_poly = np.array(poly).astype('float32')
- resized_poly[0::2] *= im_scale_x
- resized_poly[1::2] *= im_scale_y
- return resized_poly.tolist()
- def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, im_h, im_w)
- mask = mask_util.decode(rle)
- mask = cv2.resize(
- mask,
- None,
- None,
- fx=im_scale_x,
- fy=im_scale_y,
- interpolation=self.interp)
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- im_h, im_w = im_size
- im_scale_x, im_scale_y = scale
- resized_segms = []
- for segm in segms:
- if is_poly(segm):
- # Polygon format
- resized_segms.append([
- _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
- ])
- else:
- # RLE format
- import pycocotools.mask as mask_util
- resized_segms.append(
- _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
- return resized_segms
- def apply(self, sample, context=None):
- target_size = random.choice(self.short_side_sizes)
- interp = random.choice(
- self.interps) if self.random_interp else self.interp
- return self.resize(sample, target_size, self.max_size, interp)
- @register_op
- class RandomSizeCrop(BaseOperator):
- """
- Cut the image randomly according to `min_size` and `max_size`
- """
- def __init__(self, min_size, max_size):
- super(RandomSizeCrop, self).__init__()
- self.min_size = min_size
- self.max_size = max_size
- from paddle.vision.transforms.functional import crop as paddle_crop
- self.paddle_crop = paddle_crop
- @staticmethod
- def get_crop_params(img_shape, output_size):
- """Get parameters for ``crop`` for a random crop.
- Args:
- img_shape (list|tuple): Image's height and width.
- output_size (list|tuple): Expected output size of the crop.
- Returns:
- tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
- """
- h, w = img_shape
- th, tw = output_size
- if h + 1 < th or w + 1 < tw:
- raise ValueError(
- "Required crop size {} is larger then input image size {}".
- format((th, tw), (h, w)))
- if w == tw and h == th:
- return 0, 0, h, w
- i = random.randint(0, h - th + 1)
- j = random.randint(0, w - tw + 1)
- return i, j, th, tw
- def crop(self, sample, region):
- image_shape = sample['image'].shape[:2]
- sample['image'] = self.paddle_crop(sample['image'], *region)
- keep_index = None
- # apply bbox
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], region)
- bbox = sample['gt_bbox'].reshape([-1, 2, 2])
- area = (bbox[:, 1, :] - bbox[:, 0, :]).prod(axis=1)
- keep_index = np.where(area > 0)[0]
- sample['gt_bbox'] = sample['gt_bbox'][keep_index] if len(
- keep_index) > 0 else np.zeros(
- [0, 4], dtype=np.float32)
- sample['gt_class'] = sample['gt_class'][keep_index] if len(
- keep_index) > 0 else np.zeros(
- [0, 1], dtype=np.float32)
- if 'gt_score' in sample:
- sample['gt_score'] = sample['gt_score'][keep_index] if len(
- keep_index) > 0 else np.zeros(
- [0, 1], dtype=np.float32)
- if 'is_crowd' in sample:
- sample['is_crowd'] = sample['is_crowd'][keep_index] if len(
- keep_index) > 0 else np.zeros(
- [0, 1], dtype=np.float32)
- # apply polygon
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], region,
- image_shape)
- if keep_index is not None:
- sample['gt_poly'] = sample['gt_poly'][keep_index]
- # apply gt_segm
- if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
- i, j, h, w = region
- sample['gt_segm'] = sample['gt_segm'][:, i:i + h, j:j + w]
- if keep_index is not None:
- sample['gt_segm'] = sample['gt_segm'][keep_index]
- return sample
- def apply_bbox(self, bbox, region):
- i, j, h, w = region
- region_size = np.asarray([w, h])
- crop_bbox = bbox - np.asarray([j, i, j, i])
- crop_bbox = np.minimum(crop_bbox.reshape([-1, 2, 2]), region_size)
- crop_bbox = crop_bbox.clip(min=0)
- return crop_bbox.reshape([-1, 4]).astype('float32')
- def apply_segm(self, segms, region, image_shape):
- def _crop_poly(segm, crop):
- xmin, ymin, xmax, ymax = crop
- crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
- crop_p = np.array(crop_coord).reshape(4, 2)
- crop_p = Polygon(crop_p)
- crop_segm = list()
- for poly in segm:
- poly = np.array(poly).reshape(len(poly) // 2, 2)
- polygon = Polygon(poly)
- if not polygon.is_valid:
- exterior = polygon.exterior
- multi_lines = exterior.intersection(exterior)
- polygons = shapely.ops.polygonize(multi_lines)
- polygon = MultiPolygon(polygons)
- multi_polygon = list()
- if isinstance(polygon, MultiPolygon):
- multi_polygon = copy.deepcopy(polygon)
- else:
- multi_polygon.append(copy.deepcopy(polygon))
- for per_polygon in multi_polygon:
- inter = per_polygon.intersection(crop_p)
- if not inter:
- continue
- if isinstance(inter, (MultiPolygon, GeometryCollection)):
- for part in inter:
- if not isinstance(part, Polygon):
- continue
- part = np.squeeze(
- np.array(part.exterior.coords[:-1]).reshape(1,
- -1))
- part[0::2] -= xmin
- part[1::2] -= ymin
- crop_segm.append(part.tolist())
- elif isinstance(inter, Polygon):
- crop_poly = np.squeeze(
- np.array(inter.exterior.coords[:-1]).reshape(1, -1))
- crop_poly[0::2] -= xmin
- crop_poly[1::2] -= ymin
- crop_segm.append(crop_poly.tolist())
- else:
- continue
- return crop_segm
- def _crop_rle(rle, crop, height, width):
- if 'counts' in rle and type(rle['counts']) == list:
- rle = mask_util.frPyObjects(rle, height, width)
- mask = mask_util.decode(rle)
- mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
- return rle
- i, j, h, w = region
- crop = [j, i, j + w, i + h]
- height, width = image_shape
- crop_segms = []
- for segm in segms:
- if is_poly(segm):
- import copy
- import shapely.ops
- from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
- # Polygon format
- crop_segms.append(_crop_poly(segm, crop))
- else:
- # RLE format
- import pycocotools.mask as mask_util
- crop_segms.append(_crop_rle(segm, crop, height, width))
- return crop_segms
- def apply(self, sample, context=None):
- h = random.randint(self.min_size,
- min(sample['image'].shape[0], self.max_size))
- w = random.randint(self.min_size,
- min(sample['image'].shape[1], self.max_size))
- region = self.get_crop_params(sample['image'].shape[:2], [h, w])
- return self.crop(sample, region)
- @register_op
- class WarpAffine(BaseOperator):
- def __init__(self,
- keep_res=False,
- pad=31,
- input_h=512,
- input_w=512,
- scale=0.4,
- shift=0.1,
- down_ratio=4):
- """WarpAffine
- Warp affine the image
- The code is based on https://github.com/xingyizhou/CenterNet/blob/master/src/lib/datasets/sample/ctdet.py
- """
- super(WarpAffine, self).__init__()
- self.keep_res = keep_res
- self.pad = pad
- self.input_h = input_h
- self.input_w = input_w
- self.scale = scale
- self.shift = shift
- self.down_ratio = down_ratio
- def apply(self, sample, context=None):
- img = sample['image']
- img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
- h, w = img.shape[:2]
- if self.keep_res:
- # True in detection eval/infer
- input_h = (h | self.pad) + 1
- input_w = (w | self.pad) + 1
- s = np.array([input_w, input_h], dtype=np.float32)
- c = np.array([w // 2, h // 2], dtype=np.float32)
- else:
- # False in centertrack eval_mot/eval_mot
- s = max(h, w) * 1.0
- input_h, input_w = self.input_h, self.input_w
- c = np.array([w / 2., h / 2.], dtype=np.float32)
- trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
- img = cv2.resize(img, (w, h))
- inp = cv2.warpAffine(
- img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
- sample['image'] = inp
- if not self.keep_res:
- out_h = input_h // self.down_ratio
- out_w = input_w // self.down_ratio
- trans_output = get_affine_transform(c, s, 0, [out_w, out_h])
- sample.update({
- 'center': c,
- 'scale': s,
- 'out_height': out_h,
- 'out_width': out_w,
- 'inp_height': input_h,
- 'inp_width': input_w,
- 'trans_input': trans_input,
- 'trans_output': trans_output,
- })
- return sample
- @register_op
- class FlipWarpAffine(BaseOperator):
- def __init__(self,
- keep_res=False,
- pad=31,
- input_h=512,
- input_w=512,
- not_rand_crop=False,
- scale=0.4,
- shift=0.1,
- flip=0.5,
- is_scale=True,
- use_random=True,
- add_pre_img=False):
- """FlipWarpAffine
- 1. Random Crop
- 2. Flip the image horizontal
- 3. Warp affine the image
- 4. (Optinal) Add previous image
- """
- super(FlipWarpAffine, self).__init__()
- self.keep_res = keep_res
- self.pad = pad
- self.input_h = input_h
- self.input_w = input_w
- self.not_rand_crop = not_rand_crop
- self.scale = scale
- self.shift = shift
- self.flip = flip
- self.is_scale = is_scale
- self.use_random = use_random
- self.add_pre_img = add_pre_img
- def __call__(self, samples, context=None):
- if self.add_pre_img:
- assert isinstance(samples, Sequence) and len(samples) == 2
- sample, pre_sample = samples[0], samples[1]
- else:
- sample = samples
- img = sample['image']
- img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
- if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
- return sample
- h, w = img.shape[:2]
- flipped = 0
- if self.keep_res:
- input_h = (h | self.pad) + 1
- input_w = (w | self.pad) + 1
- s = np.array([input_w, input_h], dtype=np.float32)
- c = np.array([w // 2, h // 2], dtype=np.float32)
- else:
- # centernet training default
- s = max(h, w) * 1.0
- input_h, input_w = self.input_h, self.input_w
- c = np.array([w / 2., h / 2.], dtype=np.float32)
- if self.use_random:
- gt_bbox = sample['gt_bbox']
- if not self.not_rand_crop:
- # centernet default
- s = s * np.random.choice(np.arange(0.6, 1.4, 0.1))
- w_border = get_border(128, w)
- h_border = get_border(128, h)
- c[0] = np.random.randint(low=w_border, high=w - w_border)
- c[1] = np.random.randint(low=h_border, high=h - h_border)
- else:
- sf = self.scale
- cf = self.shift
- c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
- c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
- s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
- if np.random.random() < self.flip:
- img = img[:, ::-1, :]
- c[0] = w - c[0] - 1
- oldx1 = gt_bbox[:, 0].copy()
- oldx2 = gt_bbox[:, 2].copy()
- gt_bbox[:, 0] = w - oldx2 - 1
- gt_bbox[:, 2] = w - oldx1 - 1
- flipped = 1
- sample['gt_bbox'] = gt_bbox
- trans_input = get_affine_transform(c, s, 0, [input_w, input_h])
- inp = cv2.warpAffine(
- img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR)
- if self.is_scale:
- inp = (inp.astype(np.float32) / 255.)
- sample['image'] = inp
- sample['center'] = c
- sample['scale'] = s
- if self.add_pre_img:
- sample['trans_input'] = trans_input
- # previous image, use same aug trans_input as current image
- pre_img = pre_sample['image']
- pre_img = cv2.cvtColor(pre_img, cv2.COLOR_RGB2BGR)
- if flipped:
- pre_img = pre_img[:, ::-1, :].copy()
- pre_inp = cv2.warpAffine(
- pre_img,
- trans_input, (input_w, input_h),
- flags=cv2.INTER_LINEAR)
- if self.is_scale:
- pre_inp = (pre_inp.astype(np.float32) / 255.)
- sample['pre_image'] = pre_inp
- # if empty gt_bbox
- if 'gt_bbox' in pre_sample and len(pre_sample['gt_bbox']) == 0:
- return sample
- pre_gt_bbox = pre_sample['gt_bbox']
- if flipped:
- pre_oldx1 = pre_gt_bbox[:, 0].copy()
- pre_oldx2 = pre_gt_bbox[:, 2].copy()
- pre_gt_bbox[:, 0] = w - pre_oldx1 - 1
- pre_gt_bbox[:, 2] = w - pre_oldx2 - 1
- sample['pre_gt_bbox'] = pre_gt_bbox
- sample['pre_gt_class'] = pre_sample['gt_class']
- sample['pre_gt_track_id'] = pre_sample['gt_track_id']
- del pre_sample
- return sample
- @register_op
- class CenterRandColor(BaseOperator):
- """Random color for CenterNet series models.
- Args:
- saturation (float): saturation settings.
- contrast (float): contrast settings.
- brightness (float): brightness settings.
- """
- def __init__(self, saturation=0.4, contrast=0.4, brightness=0.4):
- super(CenterRandColor, self).__init__()
- self.saturation = saturation
- self.contrast = contrast
- self.brightness = brightness
- def apply_saturation(self, img, img_gray):
- alpha = 1. + np.random.uniform(
- low=-self.saturation, high=self.saturation)
- self._blend(alpha, img, img_gray[:, :, None])
- return img
- def apply_contrast(self, img, img_gray):
- alpha = 1. + np.random.uniform(low=-self.contrast, high=self.contrast)
- img_mean = img_gray.mean()
- self._blend(alpha, img, img_mean)
- return img
- def apply_brightness(self, img, img_gray):
- alpha = 1 + np.random.uniform(
- low=-self.brightness, high=self.brightness)
- img *= alpha
- return img
- def _blend(self, alpha, img, img_mean):
- img *= alpha
- img_mean *= (1 - alpha)
- img += img_mean
- def apply(self, sample, context=None):
- functions = [
- self.apply_brightness,
- self.apply_contrast,
- self.apply_saturation,
- ]
- img = sample['image']
- img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- distortions = np.random.permutation(functions)
- for func in distortions:
- img = func(img, img_gray)
- sample['image'] = img
- if 'pre_image' in sample:
- pre_img = sample['pre_image']
- pre_img_gray = cv2.cvtColor(pre_img, cv2.COLOR_BGR2GRAY)
- pre_distortions = np.random.permutation(functions)
- for func in pre_distortions:
- pre_img = func(pre_img, pre_img_gray)
- sample['pre_image'] = pre_img
- return sample
- @register_op
- class Mosaic(BaseOperator):
- """ Mosaic operator for image and gt_bboxes
- The code is based on https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/data/datasets/mosaicdetection.py
- 1. get mosaic coords
- 2. clip bbox and get mosaic_labels
- 3. random_affine augment
- 4. Mixup augment as copypaste (optinal), not used in tiny/nano
- Args:
- prob (float): probability of using Mosaic, 1.0 as default
- input_dim (list[int]): input shape
- degrees (list[2]): the rotate range to apply, transform range is [min, max]
- translate (list[2]): the translate range to apply, transform range is [min, max]
- scale (list[2]): the scale range to apply, transform range is [min, max]
- shear (list[2]): the shear range to apply, transform range is [min, max]
- enable_mixup (bool): whether to enable Mixup or not
- mixup_prob (float): probability of using Mixup, 1.0 as default
- mixup_scale (list[int]): scale range of Mixup
- remove_outside_box (bool): whether remove outside boxes, False as
- default in COCO dataset, True in MOT dataset
- """
- def __init__(self,
- prob=1.0,
- input_dim=[640, 640],
- degrees=[-10, 10],
- translate=[-0.1, 0.1],
- scale=[0.1, 2],
- shear=[-2, 2],
- enable_mixup=True,
- mixup_prob=1.0,
- mixup_scale=[0.5, 1.5],
- remove_outside_box=False):
- super(Mosaic, self).__init__()
- self.prob = prob
- if isinstance(input_dim, Integral):
- input_dim = [input_dim, input_dim]
- self.input_dim = input_dim
- self.degrees = degrees
- self.translate = translate
- self.scale = scale
- self.shear = shear
- self.enable_mixup = enable_mixup
- self.mixup_prob = mixup_prob
- self.mixup_scale = mixup_scale
- self.remove_outside_box = remove_outside_box
- def get_mosaic_coords(self, mosaic_idx, xc, yc, w, h, input_h, input_w):
- # (x1, y1, x2, y2) means coords in large image,
- # small_coords means coords in small image in mosaic aug.
- if mosaic_idx == 0:
- # top left
- x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc
- small_coords = w - (x2 - x1), h - (y2 - y1), w, h
- elif mosaic_idx == 1:
- # top right
- x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc
- small_coords = 0, h - (y2 - y1), min(w, x2 - x1), h
- elif mosaic_idx == 2:
- # bottom left
- x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h)
- small_coords = w - (x2 - x1), 0, w, min(y2 - y1, h)
- elif mosaic_idx == 3:
- # bottom right
- x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2,
- yc + h)
- small_coords = 0, 0, min(w, x2 - x1), min(y2 - y1, h)
- return (x1, y1, x2, y2), small_coords
- def random_affine_augment(self,
- img,
- labels=[],
- input_dim=[640, 640],
- degrees=[-10, 10],
- scales=[0.1, 2],
- shears=[-2, 2],
- translates=[-0.1, 0.1]):
- # random rotation and scale
- degree = random.uniform(degrees[0], degrees[1])
- scale = random.uniform(scales[0], scales[1])
- assert scale > 0, "Argument scale should be positive."
- R = cv2.getRotationMatrix2D(angle=degree, center=(0, 0), scale=scale)
- M = np.ones([2, 3])
- # random shear
- shear = random.uniform(shears[0], shears[1])
- shear_x = math.tan(shear * math.pi / 180)
- shear_y = math.tan(shear * math.pi / 180)
- M[0] = R[0] + shear_y * R[1]
- M[1] = R[1] + shear_x * R[0]
- # random translation
- translate = random.uniform(translates[0], translates[1])
- translation_x = translate * input_dim[0]
- translation_y = translate * input_dim[1]
- M[0, 2] = translation_x
- M[1, 2] = translation_y
- # warpAffine
- img = cv2.warpAffine(
- img, M, dsize=tuple(input_dim), borderValue=(114, 114, 114))
- num_gts = len(labels)
- if num_gts > 0:
- # warp corner points
- corner_points = np.ones((4 * num_gts, 3))
- corner_points[:, :2] = labels[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
- 4 * num_gts, 2) # x1y1, x2y2, x1y2, x2y1
- # apply affine transform
- corner_points = corner_points @M.T
- corner_points = corner_points.reshape(num_gts, 8)
- # create new boxes
- corner_xs = corner_points[:, 0::2]
- corner_ys = corner_points[:, 1::2]
- new_bboxes = np.concatenate((corner_xs.min(1), corner_ys.min(1),
- corner_xs.max(1), corner_ys.max(1)))
- new_bboxes = new_bboxes.reshape(4, num_gts).T
- # clip boxes
- new_bboxes[:, 0::2] = np.clip(new_bboxes[:, 0::2], 0, input_dim[0])
- new_bboxes[:, 1::2] = np.clip(new_bboxes[:, 1::2], 0, input_dim[1])
- labels[:, :4] = new_bboxes
- return img, labels
- def __call__(self, sample, context=None):
- if not isinstance(sample, Sequence):
- return sample
- assert len(
- sample) == 5, "Mosaic needs 5 samples, 4 for mosaic and 1 for mixup."
- if np.random.uniform(0., 1.) > self.prob:
- return sample[0]
- mosaic_gt_bbox, mosaic_gt_class, mosaic_is_crowd, mosaic_difficult = [], [], [], []
- input_h, input_w = self.input_dim
- yc = int(random.uniform(0.5 * input_h, 1.5 * input_h))
- xc = int(random.uniform(0.5 * input_w, 1.5 * input_w))
- mosaic_img = np.full((input_h * 2, input_w * 2, 3), 114, dtype=np.uint8)
- # 1. get mosaic coords
- for mosaic_idx, sp in enumerate(sample[:4]):
- img = sp['image']
- gt_bbox = sp['gt_bbox']
- h0, w0 = img.shape[:2]
- scale = min(1. * input_h / h0, 1. * input_w / w0)
- img = cv2.resize(
- img, (int(w0 * scale), int(h0 * scale)),
- interpolation=cv2.INTER_LINEAR)
- (h, w, c) = img.shape[:3]
- # suffix l means large image, while s means small image in mosaic aug.
- (l_x1, l_y1, l_x2, l_y2), (
- s_x1, s_y1, s_x2, s_y2) = self.get_mosaic_coords(
- mosaic_idx, xc, yc, w, h, input_h, input_w)
- mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2]
- padw, padh = l_x1 - s_x1, l_y1 - s_y1
- # Normalized xywh to pixel xyxy format
- _gt_bbox = gt_bbox.copy()
- if len(gt_bbox) > 0:
- _gt_bbox[:, 0] = scale * gt_bbox[:, 0] + padw
- _gt_bbox[:, 1] = scale * gt_bbox[:, 1] + padh
- _gt_bbox[:, 2] = scale * gt_bbox[:, 2] + padw
- _gt_bbox[:, 3] = scale * gt_bbox[:, 3] + padh
- mosaic_gt_bbox.append(_gt_bbox)
- mosaic_gt_class.append(sp['gt_class'])
- if 'is_crowd' in sp:
- mosaic_is_crowd.append(sp['is_crowd'])
- if 'difficult' in sp:
- mosaic_difficult.append(sp['difficult'])
- # 2. clip bbox and get mosaic_labels([gt_bbox, gt_class, is_crowd])
- if len(mosaic_gt_bbox):
- mosaic_gt_bbox = np.concatenate(mosaic_gt_bbox, 0)
- mosaic_gt_class = np.concatenate(mosaic_gt_class, 0)
- if mosaic_is_crowd:
- mosaic_is_crowd = np.concatenate(mosaic_is_crowd, 0)
- mosaic_labels = np.concatenate([
- mosaic_gt_bbox,
- mosaic_gt_class.astype(mosaic_gt_bbox.dtype),
- mosaic_is_crowd.astype(mosaic_gt_bbox.dtype)
- ], 1)
- elif mosaic_difficult:
- mosaic_difficult = np.concatenate(mosaic_difficult, 0)
- mosaic_labels = np.concatenate([
- mosaic_gt_bbox,
- mosaic_gt_class.astype(mosaic_gt_bbox.dtype),
- mosaic_difficult.astype(mosaic_gt_bbox.dtype)
- ], 1)
- else:
- mosaic_labels = np.concatenate([
- mosaic_gt_bbox, mosaic_gt_class.astype(mosaic_gt_bbox.dtype)
- ], 1)
- if self.remove_outside_box:
- # for MOT dataset
- flag1 = mosaic_gt_bbox[:, 0] < 2 * input_w
- flag2 = mosaic_gt_bbox[:, 2] > 0
- flag3 = mosaic_gt_bbox[:, 1] < 2 * input_h
- flag4 = mosaic_gt_bbox[:, 3] > 0
- flag_all = flag1 * flag2 * flag3 * flag4
- mosaic_labels = mosaic_labels[flag_all]
- else:
- mosaic_labels[:, 0] = np.clip(mosaic_labels[:, 0], 0,
- 2 * input_w)
- mosaic_labels[:, 1] = np.clip(mosaic_labels[:, 1], 0,
- 2 * input_h)
- mosaic_labels[:, 2] = np.clip(mosaic_labels[:, 2], 0,
- 2 * input_w)
- mosaic_labels[:, 3] = np.clip(mosaic_labels[:, 3], 0,
- 2 * input_h)
- else:
- mosaic_labels = np.zeros((1, 6))
- # 3. random_affine augment
- mosaic_img, mosaic_labels = self.random_affine_augment(
- mosaic_img,
- mosaic_labels,
- input_dim=self.input_dim,
- degrees=self.degrees,
- translates=self.translate,
- scales=self.scale,
- shears=self.shear)
- # 4. Mixup augment as copypaste, https://arxiv.org/abs/2012.07177
- # optinal, not used(enable_mixup=False) in tiny/nano
- if (self.enable_mixup and not len(mosaic_labels) == 0 and
- random.random() < self.mixup_prob):
- sample_mixup = sample[4]
- mixup_img = sample_mixup['image']
- if 'is_crowd' in sample_mixup:
- cp_labels = np.concatenate([
- sample_mixup['gt_bbox'],
- sample_mixup['gt_class'].astype(mosaic_labels.dtype),
- sample_mixup['is_crowd'].astype(mosaic_labels.dtype)
- ], 1)
- elif 'difficult' in sample_mixup:
- cp_labels = np.concatenate([
- sample_mixup['gt_bbox'],
- sample_mixup['gt_class'].astype(mosaic_labels.dtype),
- sample_mixup['difficult'].astype(mosaic_labels.dtype)
- ], 1)
- else:
- cp_labels = np.concatenate([
- sample_mixup['gt_bbox'],
- sample_mixup['gt_class'].astype(mosaic_labels.dtype)
- ], 1)
- mosaic_img, mosaic_labels = self.mixup_augment(
- mosaic_img, mosaic_labels, self.input_dim, cp_labels, mixup_img)
- sample0 = sample[0]
- sample0['image'] = mosaic_img.astype(np.uint8) # can not be float32
- sample0['h'] = float(mosaic_img.shape[0])
- sample0['w'] = float(mosaic_img.shape[1])
- sample0['im_shape'][0] = sample0['h']
- sample0['im_shape'][1] = sample0['w']
- sample0['gt_bbox'] = mosaic_labels[:, :4].astype(np.float32)
- sample0['gt_class'] = mosaic_labels[:, 4:5].astype(np.float32)
- if 'is_crowd' in sample[0]:
- sample0['is_crowd'] = mosaic_labels[:, 5:6].astype(np.float32)
- if 'difficult' in sample[0]:
- sample0['difficult'] = mosaic_labels[:, 5:6].astype(np.float32)
- return sample0
- def mixup_augment(self, origin_img, origin_labels, input_dim, cp_labels,
- img):
- jit_factor = random.uniform(*self.mixup_scale)
- FLIP = random.uniform(0, 1) > 0.5
- if len(img.shape) == 3:
- cp_img = np.ones(
- (input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114
- else:
- cp_img = np.ones(input_dim, dtype=np.uint8) * 114
- cp_scale_ratio = min(input_dim[0] / img.shape[0],
- input_dim[1] / img.shape[1])
- resized_img = cv2.resize(
- img, (int(img.shape[1] * cp_scale_ratio),
- int(img.shape[0] * cp_scale_ratio)),
- interpolation=cv2.INTER_LINEAR)
- cp_img[:int(img.shape[0] * cp_scale_ratio), :int(img.shape[
- 1] * cp_scale_ratio)] = resized_img
- cp_img = cv2.resize(cp_img, (int(cp_img.shape[1] * jit_factor),
- int(cp_img.shape[0] * jit_factor)))
- cp_scale_ratio *= jit_factor
- if FLIP:
- cp_img = cp_img[:, ::-1, :]
- origin_h, origin_w = cp_img.shape[:2]
- target_h, target_w = origin_img.shape[:2]
- padded_img = np.zeros(
- (max(origin_h, target_h), max(origin_w, target_w), 3),
- dtype=np.uint8)
- padded_img[:origin_h, :origin_w] = cp_img
- x_offset, y_offset = 0, 0
- if padded_img.shape[0] > target_h:
- y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
- if padded_img.shape[1] > target_w:
- x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
- padded_cropped_img = padded_img[y_offset:y_offset + target_h, x_offset:
- x_offset + target_w]
- # adjust boxes
- cp_bboxes_origin_np = cp_labels[:, :4].copy()
- cp_bboxes_origin_np[:, 0::2] = np.clip(cp_bboxes_origin_np[:, 0::2] *
- cp_scale_ratio, 0, origin_w)
- cp_bboxes_origin_np[:, 1::2] = np.clip(cp_bboxes_origin_np[:, 1::2] *
- cp_scale_ratio, 0, origin_h)
- if FLIP:
- cp_bboxes_origin_np[:, 0::2] = (
- origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1])
- cp_bboxes_transformed_np = cp_bboxes_origin_np.copy()
- if self.remove_outside_box:
- # for MOT dataset
- cp_bboxes_transformed_np[:, 0::2] -= x_offset
- cp_bboxes_transformed_np[:, 1::2] -= y_offset
- else:
- cp_bboxes_transformed_np[:, 0::2] = np.clip(
- cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w)
- cp_bboxes_transformed_np[:, 1::2] = np.clip(
- cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h)
- cls_labels = cp_labels[:, 4:5].copy()
- box_labels = cp_bboxes_transformed_np
- if cp_labels.shape[-1] == 6:
- crd_labels = cp_labels[:, 5:6].copy()
- labels = np.hstack((box_labels, cls_labels, crd_labels))
- else:
- labels = np.hstack((box_labels, cls_labels))
- if self.remove_outside_box:
- labels = labels[labels[:, 0] < target_w]
- labels = labels[labels[:, 2] > 0]
- labels = labels[labels[:, 1] < target_h]
- labels = labels[labels[:, 3] > 0]
- origin_labels = np.vstack((origin_labels, labels))
- origin_img = origin_img.astype(np.float32)
- origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(
- np.float32)
- return origin_img.astype(np.uint8), origin_labels
- @register_op
- class PadResize(BaseOperator):
- """ PadResize for image and gt_bbbox
- Args:
- target_size (list[int]): input shape
- fill_value (float): pixel value of padded image
- """
- def __init__(self, target_size, fill_value=114):
- super(PadResize, self).__init__()
- if isinstance(target_size, Integral):
- target_size = [target_size, target_size]
- self.target_size = target_size
- self.fill_value = fill_value
- def _resize(self, img, bboxes, labels):
- ratio = min(self.target_size[0] / img.shape[0],
- self.target_size[1] / img.shape[1])
- w, h = int(img.shape[1] * ratio), int(img.shape[0] * ratio)
- resized_img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)
- if len(bboxes) > 0:
- bboxes *= ratio
- mask = np.minimum(bboxes[:, 2] - bboxes[:, 0],
- bboxes[:, 3] - bboxes[:, 1]) > 1
- bboxes = bboxes[mask]
- labels = labels[mask]
- return resized_img, bboxes, labels
- def _pad(self, img):
- h, w, _ = img.shape
- if h == self.target_size[0] and w == self.target_size[1]:
- return img
- padded_img = np.full(
- (self.target_size[0], self.target_size[1], 3),
- self.fill_value,
- dtype=np.uint8)
- padded_img[:h, :w] = img
- return padded_img
- def apply(self, sample, context=None):
- image = sample['image']
- bboxes = sample['gt_bbox']
- labels = sample['gt_class']
- image, bboxes, labels = self._resize(image, bboxes, labels)
- sample['image'] = self._pad(image).astype(np.float32)
- sample['gt_bbox'] = bboxes
- sample['gt_class'] = labels
- return sample
- @register_op
- class RandomShift(BaseOperator):
- """
- Randomly shift image
- Args:
- prob (float): probability to do random shift.
- max_shift (int): max shift pixels
- filter_thr (int): filter gt bboxes if one side is smaller than this
- """
- def __init__(self, prob=0.5, max_shift=32, filter_thr=1):
- super(RandomShift, self).__init__()
- self.prob = prob
- self.max_shift = max_shift
- self.filter_thr = filter_thr
- def calc_shift_coor(self, im_h, im_w, shift_h, shift_w):
- return [
- max(0, shift_w), max(0, shift_h), min(im_w, im_w + shift_w),
- min(im_h, im_h + shift_h)
- ]
- def apply(self, sample, context=None):
- if random.random() > self.prob:
- return sample
- im = sample['image']
- gt_bbox = sample['gt_bbox']
- gt_class = sample['gt_class']
- im_h, im_w = im.shape[:2]
- shift_h = random.randint(-self.max_shift, self.max_shift)
- shift_w = random.randint(-self.max_shift, self.max_shift)
- gt_bbox[:, 0::2] += shift_w
- gt_bbox[:, 1::2] += shift_h
- gt_bbox[:, 0::2] = np.clip(gt_bbox[:, 0::2], 0, im_w)
- gt_bbox[:, 1::2] = np.clip(gt_bbox[:, 1::2], 0, im_h)
- gt_bbox_h = gt_bbox[:, 2] - gt_bbox[:, 0]
- gt_bbox_w = gt_bbox[:, 3] - gt_bbox[:, 1]
- keep = (gt_bbox_w > self.filter_thr) & (gt_bbox_h > self.filter_thr)
- if not keep.any():
- return sample
- gt_bbox = gt_bbox[keep]
- gt_class = gt_class[keep]
- # shift image
- coor_new = self.calc_shift_coor(im_h, im_w, shift_h, shift_w)
- # shift frame to the opposite direction
- coor_old = self.calc_shift_coor(im_h, im_w, -shift_h, -shift_w)
- canvas = np.zeros_like(im)
- canvas[coor_new[1]:coor_new[3], coor_new[0]:coor_new[2]] \
- = im[coor_old[1]:coor_old[3], coor_old[0]:coor_old[2]]
- sample['image'] = canvas
- sample['gt_bbox'] = gt_bbox
- sample['gt_class'] = gt_class
- return sample
- @register_op
- class StrongAugImage(BaseOperator):
- def __init__(self, transforms):
- super(StrongAugImage, self).__init__()
- self.transforms = Compose(transforms)
- def apply(self, sample, context=None):
- im = sample
- im['image'] = sample['image'].astype('uint8')
- results = self.transforms(im)
- sample['image'] = results['image'].astype('uint8')
- return sample
- @register_op
- class RandomColorJitter(BaseOperator):
- def __init__(self,
- prob=0.8,
- brightness=0.4,
- contrast=0.4,
- saturation=0.4,
- hue=0.1):
- super(RandomColorJitter, self).__init__()
- self.prob = prob
- self.brightness = brightness
- self.contrast = contrast
- self.saturation = saturation
- self.hue = hue
- def apply(self, sample, context=None):
- if np.random.uniform(0, 1) < self.prob:
- from paddle.vision.transforms import ColorJitter
- transform = ColorJitter(self.brightness, self.contrast,
- self.saturation, self.hue)
- sample['image'] = transform(sample['image'].astype(np.uint8))
- sample['image'] = sample['image'].astype(np.float32)
- return sample
- @register_op
- class RandomGrayscale(BaseOperator):
- def __init__(self, prob=0.2):
- super(RandomGrayscale, self).__init__()
- self.prob = prob
- def apply(self, sample, context=None):
- if np.random.uniform(0, 1) < self.prob:
- from paddle.vision.transforms import Grayscale
- transform = Grayscale(num_output_channels=3)
- sample['image'] = transform(sample['image'])
- return sample
- @register_op
- class RandomGaussianBlur(BaseOperator):
- def __init__(self, prob=0.5, sigma=[0.1, 2.0]):
- super(RandomGaussianBlur, self).__init__()
- self.prob = prob
- self.sigma = sigma
- def apply(self, sample, context=None):
- if np.random.uniform(0, 1) < self.prob:
- sigma = np.random.uniform(self.sigma[0], self.sigma[1])
- im = cv2.GaussianBlur(sample['image'], (23, 23), sigma)
- sample['image'] = im
- return sample
- @register_op
- class RandomErasing(BaseOperator):
- def __init__(self,
- prob=0.5,
- scale=(0.02, 0.33),
- ratio=(0.3, 3.3),
- value=0,
- inplace=False):
- super(RandomErasing, self).__init__()
- assert isinstance(scale,
- (tuple, list)), "scale should be a tuple or list"
- assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
- ), "scale should be of kind (min, max) and in range [0, 1]"
- assert isinstance(ratio,
- (tuple, list)), "ratio should be a tuple or list"
- assert (ratio[0] >= 0 and
- ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
- assert isinstance(
- value, (Number, str, tuple,
- list)), "value should be a number, tuple, list or str"
- if isinstance(value, str) and value != "random":
- raise ValueError("value must be 'random' when type is str")
- self.prob = prob
- self.scale = scale
- self.ratio = ratio
- self.value = value
- self.inplace = inplace
- def _erase(self, img, i, j, h, w, v, inplace=False):
- if not inplace:
- img = img.copy()
- img[i:i + h, j:j + w, ...] = v
- return img
- def _get_param(self, img, scale, ratio, value):
- shape = np.asarray(img).astype(np.uint8).shape
- h, w, c = shape[-3], shape[-2], shape[-1]
- img_area = h * w
- log_ratio = np.log(ratio)
- for _ in range(1):
- erase_area = np.random.uniform(*scale) * img_area
- aspect_ratio = np.exp(np.random.uniform(*log_ratio))
- erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
- erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
- if erase_h >= h or erase_w >= w:
- continue
- if value is None:
- v = np.random.normal(size=[erase_h, erase_w, c]) * 255
- else:
- v = np.array(value)[None, None, :]
- top = np.random.randint(0, h - erase_h + 1)
- left = np.random.randint(0, w - erase_w + 1)
- return top, left, erase_h, erase_w, v
- return 0, 0, h, w, img
- def apply(self, sample, context=None):
- if random.random() < self.prob:
- if isinstance(self.value, Number):
- value = [self.value]
- elif isinstance(self.value, str):
- value = None
- else:
- value = self.value
- if value is not None and not (len(value) == 1 or len(value) == 3):
- raise ValueError(
- "Value should be a single number or a sequence with length equals to image's channel."
- )
- im = sample['image']
- top, left, erase_h, erase_w, v = self._get_param(im, self.scale,
- self.ratio, value)
- im = self._erase(im, top, left, erase_h, erase_w, v, self.inplace)
- sample['image'] = im
- return sample
- @register_op
- class RandomErasingCrop(BaseOperator):
- def __init__(self):
- super(RandomErasingCrop, self).__init__()
- self.transform1 = RandomErasing(
- prob=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random")
- self.transform2 = RandomErasing(
- prob=0.5, scale=(0.05, 0.2), ratio=(0.1, 6), value="random")
- self.transform3 = RandomErasing(
- prob=0.3, scale=(0.05, 0.2), ratio=(0.05, 8), value="random")
- def apply(self, sample, context=None):
- sample = self.transform1(sample)
- sample = self.transform2(sample)
- sample = self.transform3(sample)
- return sample
|