123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import numpy as np
- import xml.etree.ElementTree as ET
- from ppdet.core.workspace import register, serializable
- from .dataset import DetDataset
- from ppdet.utils.logger import setup_logger
- logger = setup_logger(__name__)
- @register
- @serializable
- class VOCDataSet(DetDataset):
- """
- Load dataset with PascalVOC format.
- Notes:
- `anno_path` must contains xml file and image file path for annotations.
- Args:
- dataset_dir (str): root directory for dataset.
- image_dir (str): directory for images.
- anno_path (str): voc annotation file path.
- data_fields (list): key name of data dictionary, at least have 'image'.
- sample_num (int): number of samples to load, -1 means all.
- label_list (str): if use_default_label is False, will load
- mapping between category and class index.
- allow_empty (bool): whether to load empty entry. False as default
- empty_ratio (float): the ratio of empty record number to total
- record's, if empty_ratio is out of [0. ,1.), do not sample the
- records and use all the empty entries. 1. as default
- repeat (int): repeat times for dataset, use in benchmark.
- """
- def __init__(self,
- dataset_dir=None,
- image_dir=None,
- anno_path=None,
- data_fields=['image'],
- sample_num=-1,
- label_list=None,
- allow_empty=False,
- empty_ratio=1.,
- repeat=1):
- super(VOCDataSet, self).__init__(
- dataset_dir=dataset_dir,
- image_dir=image_dir,
- anno_path=anno_path,
- data_fields=data_fields,
- sample_num=sample_num,
- repeat=repeat)
- self.label_list = label_list
- self.allow_empty = allow_empty
- self.empty_ratio = empty_ratio
- def _sample_empty(self, records, num):
- # if empty_ratio is out of [0. ,1.), do not sample the records
- if self.empty_ratio < 0. or self.empty_ratio >= 1.:
- return records
- import random
- sample_num = min(
- int(num * self.empty_ratio / (1 - self.empty_ratio)), len(records))
- records = random.sample(records, sample_num)
- return records
- def parse_dataset(self, ):
- anno_path = os.path.join(self.dataset_dir, self.anno_path)
- image_dir = os.path.join(self.dataset_dir, self.image_dir)
- # mapping category name to class id
- # first_class:0, second_class:1, ...
- records = []
- empty_records = []
- ct = 0
- cname2cid = {}
- if self.label_list:
- label_path = os.path.join(self.dataset_dir, self.label_list)
- if not os.path.exists(label_path):
- raise ValueError("label_list {} does not exists".format(
- label_path))
- with open(label_path, 'r') as fr:
- label_id = 0
- for line in fr.readlines():
- cname2cid[line.strip()] = label_id
- label_id += 1
- else:
- cname2cid = pascalvoc_label()
- with open(anno_path, 'r') as fr:
- while True:
- line = fr.readline()
- if not line:
- break
- img_file, xml_file = [os.path.join(image_dir, x) \
- for x in line.strip().split()[:2]]
- if not os.path.exists(img_file):
- logger.warning(
- 'Illegal image file: {}, and it will be ignored'.format(
- img_file))
- continue
- if not os.path.isfile(xml_file):
- logger.warning(
- 'Illegal xml file: {}, and it will be ignored'.format(
- xml_file))
- continue
- tree = ET.parse(xml_file)
- if tree.find('id') is None:
- im_id = np.array([ct])
- else:
- im_id = np.array([int(tree.find('id').text)])
- objs = tree.findall('object')
- im_w = float(tree.find('size').find('width').text)
- im_h = float(tree.find('size').find('height').text)
- if im_w < 0 or im_h < 0:
- logger.warning(
- 'Illegal width: {} or height: {} in annotation, '
- 'and {} will be ignored'.format(im_w, im_h, xml_file))
- continue
- num_bbox, i = len(objs), 0
- gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
- gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
- gt_score = np.zeros((num_bbox, 1), dtype=np.float32)
- difficult = np.zeros((num_bbox, 1), dtype=np.int32)
- for obj in objs:
- cname = obj.find('name').text
- # user dataset may not contain difficult field
- _difficult = obj.find('difficult')
- _difficult = int(
- _difficult.text) if _difficult is not None else 0
- x1 = float(obj.find('bndbox').find('xmin').text)
- y1 = float(obj.find('bndbox').find('ymin').text)
- x2 = float(obj.find('bndbox').find('xmax').text)
- y2 = float(obj.find('bndbox').find('ymax').text)
- x1 = max(0, x1)
- y1 = max(0, y1)
- x2 = min(im_w - 1, x2)
- y2 = min(im_h - 1, y2)
- if x2 > x1 and y2 > y1:
- gt_bbox[i, :] = [x1, y1, x2, y2]
- gt_class[i, 0] = cname2cid[cname]
- gt_score[i, 0] = 1.
- difficult[i, 0] = _difficult
- i += 1
- else:
- logger.warning(
- 'Found an invalid bbox in annotations: xml_file: {}'
- ', x1: {}, y1: {}, x2: {}, y2: {}.'.format(
- xml_file, x1, y1, x2, y2))
- gt_bbox = gt_bbox[:i, :]
- gt_class = gt_class[:i, :]
- gt_score = gt_score[:i, :]
- difficult = difficult[:i, :]
- voc_rec = {
- 'im_file': img_file,
- 'im_id': im_id,
- 'h': im_h,
- 'w': im_w
- } if 'image' in self.data_fields else {}
- gt_rec = {
- 'gt_class': gt_class,
- 'gt_score': gt_score,
- 'gt_bbox': gt_bbox,
- 'difficult': difficult
- }
- for k, v in gt_rec.items():
- if k in self.data_fields:
- voc_rec[k] = v
- if len(objs) == 0:
- empty_records.append(voc_rec)
- else:
- records.append(voc_rec)
- ct += 1
- if self.sample_num > 0 and ct >= self.sample_num:
- break
- assert ct > 0, 'not found any voc record in %s' % (self.anno_path)
- logger.debug('{} samples in file {}'.format(ct, anno_path))
- if self.allow_empty and len(empty_records) > 0:
- empty_records = self._sample_empty(empty_records, len(records))
- records += empty_records
- self.roidbs, self.cname2cid = records, cname2cid
- def get_label_list(self):
- return os.path.join(self.dataset_dir, self.label_list)
- def pascalvoc_label():
- labels_map = {
- 'aeroplane': 0,
- 'bicycle': 1,
- 'bird': 2,
- 'boat': 3,
- 'bottle': 4,
- 'bus': 5,
- 'car': 6,
- 'cat': 7,
- 'chair': 8,
- 'cow': 9,
- 'diningtable': 10,
- 'dog': 11,
- 'horse': 12,
- 'motorbike': 13,
- 'person': 14,
- 'pottedplant': 15,
- 'sheep': 16,
- 'sofa': 17,
- 'train': 18,
- 'tvmonitor': 19
- }
- return labels_map
|