123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import yaml
- import argparse
- import numpy as np
- import glob
- from onnxruntime import InferenceSession
- from preprocess import Compose
- # Global dictionary
- SUPPORT_MODELS = {
- 'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
- 'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
- 'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'HRNet'
- }
- parser = argparse.ArgumentParser(description=__doc__)
- parser.add_argument("--infer_cfg", type=str, help="infer_cfg.yml")
- parser.add_argument(
- '--onnx_file', type=str, default="model.onnx", help="onnx model file path")
- parser.add_argument("--image_dir", type=str)
- parser.add_argument("--image_file", type=str)
- def get_test_images(infer_dir, infer_img):
- """
- Get image path list in TEST mode
- """
- assert infer_img is not None or infer_dir is not None, \
- "--image_file or --image_dir should be set"
- assert infer_img is None or os.path.isfile(infer_img), \
- "{} is not a file".format(infer_img)
- assert infer_dir is None or os.path.isdir(infer_dir), \
- "{} is not a directory".format(infer_dir)
- # infer_img has a higher priority
- if infer_img and os.path.isfile(infer_img):
- return [infer_img]
- images = set()
- infer_dir = os.path.abspath(infer_dir)
- assert os.path.isdir(infer_dir), \
- "infer_dir {} is not a directory".format(infer_dir)
- exts = ['jpg', 'jpeg', 'png', 'bmp']
- exts += [ext.upper() for ext in exts]
- for ext in exts:
- images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
- images = list(images)
- assert len(images) > 0, "no image found in {}".format(infer_dir)
- print("Found {} inference images in total.".format(len(images)))
- return images
- class PredictConfig(object):
- """set config of preprocess, postprocess and visualize
- Args:
- infer_config (str): path of infer_cfg.yml
- """
- def __init__(self, infer_config):
- # parsing Yaml config for Preprocess
- with open(infer_config) as f:
- yml_conf = yaml.safe_load(f)
- self.check_model(yml_conf)
- self.arch = yml_conf['arch']
- self.preprocess_infos = yml_conf['Preprocess']
- self.min_subgraph_size = yml_conf['min_subgraph_size']
- self.label_list = yml_conf['label_list']
- self.use_dynamic_shape = yml_conf['use_dynamic_shape']
- self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
- self.mask = yml_conf.get("mask", False)
- self.tracker = yml_conf.get("tracker", None)
- self.nms = yml_conf.get("NMS", None)
- self.fpn_stride = yml_conf.get("fpn_stride", None)
- if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
- print(
- 'The RCNN export model is used for ONNX and it only supports batch_size = 1'
- )
- self.print_config()
- def check_model(self, yml_conf):
- """
- Raises:
- ValueError: loaded model not in supported model type
- """
- for support_model in SUPPORT_MODELS:
- if support_model in yml_conf['arch']:
- return True
- raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
- 'arch'], SUPPORT_MODELS))
- def print_config(self):
- print('----------- Model Configuration -----------')
- print('%s: %s' % ('Model Arch', self.arch))
- print('%s: ' % ('Transform Order'))
- for op_info in self.preprocess_infos:
- print('--%s: %s' % ('transform op', op_info['type']))
- print('--------------------------------------------')
- def predict_image(infer_config, predictor, img_list):
- # load preprocess transforms
- transforms = Compose(infer_config.preprocess_infos)
- # predict image
- for img_path in img_list:
- inputs = transforms(img_path)
- inputs_name = [var.name for var in predictor.get_inputs()]
- inputs = {k: inputs[k][None, ] for k in inputs_name}
- outputs = predictor.run(output_names=None, input_feed=inputs)
- print("ONNXRuntime predict: ")
- if infer_config.arch in ["HRNet"]:
- print(np.array(outputs[0]))
- else:
- bboxes = np.array(outputs[0])
- for bbox in bboxes:
- if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold:
- print(f"{int(bbox[0])} {bbox[1]} "
- f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
- if __name__ == '__main__':
- FLAGS = parser.parse_args()
- # load image list
- img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
- # load predictor
- predictor = InferenceSession(FLAGS.onnx_file)
- # load infer config
- infer_config = PredictConfig(FLAGS.infer_cfg)
- predict_image(infer_config, predictor, img_list)
|