123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // reference from https://github.com/RangiLyu/nanodet/tree/main/demo_openvino
- #include "picodet_openvino.h"
- inline float fast_exp(float x) {
- union {
- uint32_t i;
- float f;
- } v{};
- v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
- return v.f;
- }
- inline float sigmoid(float x) { return 1.0f / (1.0f + fast_exp(-x)); }
- template <typename _Tp>
- int activation_function_softmax(const _Tp* src, _Tp* dst, int length) {
- const _Tp alpha = *std::max_element(src, src + length);
- _Tp denominator{0};
- for (int i = 0; i < length; ++i) {
- dst[i] = fast_exp(src[i] - alpha);
- denominator += dst[i];
- }
- for (int i = 0; i < length; ++i) {
- dst[i] /= denominator;
- }
- return 0;
- }
- PicoDet::PicoDet(const char* model_path) {
- InferenceEngine::Core ie;
- InferenceEngine::CNNNetwork model = ie.ReadNetwork(model_path);
- // prepare input settings
- InferenceEngine::InputsDataMap inputs_map(model.getInputsInfo());
- input_name_ = inputs_map.begin()->first;
- InferenceEngine::InputInfo::Ptr input_info = inputs_map.begin()->second;
- // prepare output settings
- InferenceEngine::OutputsDataMap outputs_map(model.getOutputsInfo());
- for (auto& output_info : outputs_map) {
- output_info.second->setPrecision(InferenceEngine::Precision::FP32);
- }
- // get network
- network_ = ie.LoadNetwork(model, "CPU");
- infer_request_ = network_.CreateInferRequest();
- }
- PicoDet::~PicoDet() {}
- void PicoDet::preprocess(cv::Mat& image, InferenceEngine::Blob::Ptr& blob) {
- int img_w = image.cols;
- int img_h = image.rows;
- int channels = 3;
- InferenceEngine::MemoryBlob::Ptr mblob =
- InferenceEngine::as<InferenceEngine::MemoryBlob>(blob);
- if (!mblob) {
- THROW_IE_EXCEPTION
- << "We expect blob to be inherited from MemoryBlob in matU8ToBlob, "
- << "but by fact we were not able to cast inputBlob to MemoryBlob";
- }
- auto mblobHolder = mblob->wmap();
- float* blob_data = mblobHolder.as<float*>();
- for (size_t c = 0; c < channels; c++) {
- for (size_t h = 0; h < img_h; h++) {
- for (size_t w = 0; w < img_w; w++) {
- blob_data[c * img_w * img_h + h * img_w + w] =
- (float)image.at<cv::Vec3b>(h, w)[c];
- }
- }
- }
- }
- std::vector<BoxInfo> PicoDet::detect(cv::Mat image,
- float score_threshold,
- float nms_threshold) {
- InferenceEngine::Blob::Ptr input_blob = infer_request_.GetBlob(input_name_);
- preprocess(image, input_blob);
- // do inference
- infer_request_.Infer();
- // get output
- std::vector<std::vector<BoxInfo>> results;
- results.resize(this->num_class_);
- for (const auto& head_info : this->heads_info_) {
- const InferenceEngine::Blob::Ptr dis_pred_blob =
- infer_request_.GetBlob(head_info.dis_layer);
- const InferenceEngine::Blob::Ptr cls_pred_blob =
- infer_request_.GetBlob(head_info.cls_layer);
- auto mdis_pred =
- InferenceEngine::as<InferenceEngine::MemoryBlob>(dis_pred_blob);
- auto mdis_pred_holder = mdis_pred->rmap();
- const float* dis_pred = mdis_pred_holder.as<const float*>();
- auto mcls_pred =
- InferenceEngine::as<InferenceEngine::MemoryBlob>(cls_pred_blob);
- auto mcls_pred_holder = mcls_pred->rmap();
- const float* cls_pred = mcls_pred_holder.as<const float*>();
- this->decode_infer(
- cls_pred, dis_pred, head_info.stride, score_threshold, results);
- }
- std::vector<BoxInfo> dets;
- for (int i = 0; i < (int)results.size(); i++) {
- this->nms(results[i], nms_threshold);
- for (auto& box : results[i]) {
- dets.push_back(box);
- }
- }
- return dets;
- }
- void PicoDet::decode_infer(const float*& cls_pred,
- const float*& dis_pred,
- int stride,
- float threshold,
- std::vector<std::vector<BoxInfo>>& results) {
- int feature_h = input_size_ / stride;
- int feature_w = input_size_ / stride;
- for (int idx = 0; idx < feature_h * feature_w; idx++) {
- int row = idx / feature_w;
- int col = idx % feature_w;
- float score = 0;
- int cur_label = 0;
- for (int label = 0; label < num_class_; label++) {
- if (cls_pred[idx * num_class_ + label] > score) {
- score = cls_pred[idx * num_class_ + label];
- cur_label = label;
- }
- }
- if (score > threshold) {
- const float* bbox_pred = dis_pred + idx * (reg_max_ + 1) * 4;
- results[cur_label].push_back(
- this->disPred2Bbox(bbox_pred, cur_label, score, col, row, stride));
- }
- }
- }
- BoxInfo PicoDet::disPred2Bbox(
- const float*& dfl_det, int label, float score, int x, int y, int stride) {
- float ct_x = (x + 0.5) * stride;
- float ct_y = (y + 0.5) * stride;
- std::vector<float> dis_pred;
- dis_pred.resize(4);
- for (int i = 0; i < 4; i++) {
- float dis = 0;
- float* dis_after_sm = new float[reg_max_ + 1];
- activation_function_softmax(
- dfl_det + i * (reg_max_ + 1), dis_after_sm, reg_max_ + 1);
- for (int j = 0; j < reg_max_ + 1; j++) {
- dis += j * dis_after_sm[j];
- }
- dis *= stride;
- dis_pred[i] = dis;
- delete[] dis_after_sm;
- }
- float xmin = (std::max)(ct_x - dis_pred[0], .0f);
- float ymin = (std::max)(ct_y - dis_pred[1], .0f);
- float xmax = (std::min)(ct_x + dis_pred[2], (float)this->input_size_);
- float ymax = (std::min)(ct_y + dis_pred[3], (float)this->input_size_);
- return BoxInfo{xmin, ymin, xmax, ymax, score, label};
- }
- void PicoDet::nms(std::vector<BoxInfo>& input_boxes, float NMS_THRESH) {
- std::sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) {
- return a.score > b.score;
- });
- std::vector<float> vArea(input_boxes.size());
- for (int i = 0; i < int(input_boxes.size()); ++i) {
- vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) *
- (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
- }
- for (int i = 0; i < int(input_boxes.size()); ++i) {
- for (int j = i + 1; j < int(input_boxes.size());) {
- float xx1 = (std::max)(input_boxes[i].x1, input_boxes[j].x1);
- float yy1 = (std::max)(input_boxes[i].y1, input_boxes[j].y1);
- float xx2 = (std::min)(input_boxes[i].x2, input_boxes[j].x2);
- float yy2 = (std::min)(input_boxes[i].y2, input_boxes[j].y2);
- float w = (std::max)(float(0), xx2 - xx1 + 1);
- float h = (std::max)(float(0), yy2 - yy1 + 1);
- float inter = w * h;
- float ovr = inter / (vArea[i] + vArea[j] - inter);
- if (ovr >= NMS_THRESH) {
- input_boxes.erase(input_boxes.begin() + j);
- vArea.erase(vArea.begin() + j);
- } else {
- j++;
- }
- }
- }
- }
|