123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <ctime>
- #include <memory>
- #include <string>
- #include <utility>
- #include <vector>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <inference_engine.hpp>
- #include "keypoint_postprocess.h"
- namespace PaddleDetection {
- // Object KeyPoint Result
- struct KeyPointResult {
- // Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
- std::vector<float> keypoints;
- int num_joints = -1;
- };
- // Visualiztion KeyPoint Result
- cv::Mat VisualizeKptsResult(const cv::Mat& img,
- const std::vector<KeyPointResult>& results,
- const std::vector<int>& colormap,
- float threshold = 0.2);
- class KeyPointDetector {
- public:
- explicit KeyPointDetector(const std::string& model_path,
- int input_height = 256,
- int input_width = 192,
- float score_threshold = 0.3,
- const int batch_size = 1,
- bool use_dark = true) {
- use_dark_ = use_dark;
- in_w = input_width;
- in_h = input_height;
- threshold_ = score_threshold;
- InferenceEngine::Core ie;
- auto model = ie.ReadNetwork(model_path);
- // prepare input settings
- InferenceEngine::InputsDataMap inputs_map(model.getInputsInfo());
- input_name_ = inputs_map.begin()->first;
- InferenceEngine::InputInfo::Ptr input_info = inputs_map.begin()->second;
- // prepare output settings
- InferenceEngine::OutputsDataMap outputs_map(model.getOutputsInfo());
- int idx = 0;
- for (auto& output_info : outputs_map) {
- if (idx == 0) {
- output_info.second->setPrecision(InferenceEngine::Precision::FP32);
- } else {
- output_info.second->setPrecision(InferenceEngine::Precision::FP32);
- }
- idx++;
- }
- // get network
- network_ = ie.LoadNetwork(model, "CPU");
- infer_request_ = network_.CreateInferRequest();
- }
- // Load Paddle inference model
- void LoadModel(std::string model_file, int num_theads);
- // Run predictor
- void Predict(const std::vector<cv::Mat> imgs,
- std::vector<std::vector<float>>& center,
- std::vector<std::vector<float>>& scale,
- std::vector<KeyPointResult>* result = nullptr);
- bool use_dark() { return this->use_dark_; }
- inline float get_threshold() { return threshold_; };
- int in_w = 128;
- int in_h = 256;
- private:
- // Postprocess result
- void Postprocess(std::vector<float>& output,
- std::vector<uint64_t>& output_shape,
- std::vector<float>& idxout,
- std::vector<uint64_t>& idx_shape,
- std::vector<KeyPointResult>* result,
- std::vector<std::vector<float>>& center,
- std::vector<std::vector<float>>& scale);
- std::vector<float> output_data_;
- std::vector<float> idx_data_;
- float threshold_;
- bool use_dark_;
- InferenceEngine::ExecutableNetwork network_;
- InferenceEngine::InferRequest infer_request_;
- std::string input_name_;
- };
- } // namespace PaddleDetection
|