123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import cv2
- import numpy as np
- import argparse
- from scipy.special import softmax
- from openvino.runtime import Core
- def image_preprocess(img_path, re_shape):
- img = cv2.imread(img_path)
- img = cv2.resize(
- img, (re_shape, re_shape), interpolation=cv2.INTER_LANCZOS4)
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- img = np.transpose(img, [2, 0, 1]) / 255
- img = np.expand_dims(img, 0)
- img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
- img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
- img -= img_mean
- img /= img_std
- return img.astype(np.float32)
- def get_color_map_list(num_classes):
- color_map = num_classes * [0, 0, 0]
- for i in range(0, num_classes):
- j = 0
- lab = i
- while lab:
- color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
- color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
- color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
- j += 1
- lab >>= 3
- color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
- return color_map
- def draw_box(srcimg, results, class_label):
- label_list = list(
- map(lambda x: x.strip(), open(class_label, 'r').readlines()))
- for i in range(len(results)):
- color_list = get_color_map_list(len(label_list))
- clsid2color = {}
- classid, conf = int(results[i, 0]), results[i, 1]
- xmin, ymin, xmax, ymax = int(results[i, 2]), int(results[i, 3]), int(
- results[i, 4]), int(results[i, 5])
- if classid not in clsid2color:
- clsid2color[classid] = color_list[classid]
- color = tuple(clsid2color[classid])
- cv2.rectangle(srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2)
- print(label_list[classid] + ': ' + str(round(conf, 3)))
- cv2.putText(
- srcimg,
- label_list[classid] + ':' + str(round(conf, 3)), (xmin, ymin - 10),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.8, (0, 255, 0),
- thickness=2)
- return srcimg
- def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
- """
- Args:
- box_scores (N, 5): boxes in corner-form and probabilities.
- iou_threshold: intersection over union threshold.
- top_k: keep top_k results. If k <= 0, keep all the results.
- candidate_size: only consider the candidates with the highest scores.
- Returns:
- picked: a list of indexes of the kept boxes
- """
- scores = box_scores[:, -1]
- boxes = box_scores[:, :-1]
- picked = []
- indexes = np.argsort(scores)
- indexes = indexes[-candidate_size:]
- while len(indexes) > 0:
- current = indexes[-1]
- picked.append(current)
- if 0 < top_k == len(picked) or len(indexes) == 1:
- break
- current_box = boxes[current, :]
- indexes = indexes[:-1]
- rest_boxes = boxes[indexes, :]
- iou = iou_of(
- rest_boxes,
- np.expand_dims(
- current_box, axis=0), )
- indexes = indexes[iou <= iou_threshold]
- return box_scores[picked, :]
- def iou_of(boxes0, boxes1, eps=1e-5):
- """Return intersection-over-union (Jaccard index) of boxes.
- Args:
- boxes0 (N, 4): ground truth boxes.
- boxes1 (N or 1, 4): predicted boxes.
- eps: a small number to avoid 0 as denominator.
- Returns:
- iou (N): IoU values.
- """
- overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
- overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
- overlap_area = area_of(overlap_left_top, overlap_right_bottom)
- area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
- area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
- return overlap_area / (area0 + area1 - overlap_area + eps)
- def area_of(left_top, right_bottom):
- """Compute the areas of rectangles given two corners.
- Args:
- left_top (N, 2): left top corner.
- right_bottom (N, 2): right bottom corner.
- Returns:
- area (N): return the area.
- """
- hw = np.clip(right_bottom - left_top, 0.0, None)
- return hw[..., 0] * hw[..., 1]
- class PicoDetNMS(object):
- """
- Args:
- input_shape (int): network input image size
- scale_factor (float): scale factor of ori image
- """
- def __init__(self,
- input_shape,
- scale_x,
- scale_y,
- strides=[8, 16, 32, 64],
- score_threshold=0.4,
- nms_threshold=0.5,
- nms_top_k=1000,
- keep_top_k=100):
- self.input_shape = input_shape
- self.scale_x = scale_x
- self.scale_y = scale_y
- self.strides = strides
- self.score_threshold = score_threshold
- self.nms_threshold = nms_threshold
- self.nms_top_k = nms_top_k
- self.keep_top_k = keep_top_k
- def __call__(self, decode_boxes, select_scores):
- batch_size = 1
- out_boxes_list = []
- for batch_id in range(batch_size):
- # nms
- bboxes = np.concatenate(decode_boxes, axis=0)
- confidences = np.concatenate(select_scores, axis=0)
- picked_box_probs = []
- picked_labels = []
- for class_index in range(0, confidences.shape[1]):
- probs = confidences[:, class_index]
- mask = probs > self.score_threshold
- probs = probs[mask]
- if probs.shape[0] == 0:
- continue
- subset_boxes = bboxes[mask, :]
- box_probs = np.concatenate(
- [subset_boxes, probs.reshape(-1, 1)], axis=1)
- box_probs = hard_nms(
- box_probs,
- iou_threshold=self.nms_threshold,
- top_k=self.keep_top_k, )
- picked_box_probs.append(box_probs)
- picked_labels.extend([class_index] * box_probs.shape[0])
- if len(picked_box_probs) == 0:
- out_boxes_list.append(np.empty((0, 4)))
- else:
- picked_box_probs = np.concatenate(picked_box_probs)
- # resize output boxes
- picked_box_probs[:, 0] *= self.scale_x
- picked_box_probs[:, 2] *= self.scale_x
- picked_box_probs[:, 1] *= self.scale_y
- picked_box_probs[:, 3] *= self.scale_y
- # clas score box
- out_boxes_list.append(
- np.concatenate(
- [
- np.expand_dims(
- np.array(picked_labels),
- axis=-1), np.expand_dims(
- picked_box_probs[:, 4], axis=-1),
- picked_box_probs[:, :4]
- ],
- axis=1))
- out_boxes_list = np.concatenate(out_boxes_list, axis=0)
- return out_boxes_list
- def detect(img_file, compiled_model, class_label):
- output = compiled_model.infer_new_request({0: test_image})
- result_ie = list(output.values())
- decode_boxes = []
- select_scores = []
- num_outs = int(len(result_ie) / 2)
- for out_idx in range(num_outs):
- decode_boxes.append(result_ie[out_idx])
- select_scores.append(result_ie[out_idx + num_outs])
- image = cv2.imread(img_file, 1)
- scale_x = image.shape[1] / test_image.shape[3]
- scale_y = image.shape[0] / test_image.shape[2]
- nms = PicoDetNMS(test_image.shape[2:], scale_x, scale_y)
- np_boxes = nms(decode_boxes, select_scores)
- res_image = draw_box(image, np_boxes, class_label)
- cv2.imwrite('res.jpg', res_image)
- cv2.imshow("res", res_image)
- cv2.waitKey()
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--img_path',
- type=str,
- default='../../demo_onnxruntime/imgs/bus.jpg',
- help="image path")
- parser.add_argument(
- '--onnx_path',
- type=str,
- default='out_onnxsim_infer/picodet_s_320_postproccesed_woNMS.onnx',
- help="onnx filepath")
- parser.add_argument('--in_shape', type=int, default=320, help="input_size")
- parser.add_argument(
- '--class_label',
- type=str,
- default='coco_label.txt',
- help="class label file")
- args = parser.parse_args()
- ie = Core()
- net = ie.read_model(args.onnx_path)
- test_image = image_preprocess(args.img_path, args.in_shape)
- compiled_model = ie.compile_model(net, 'CPU')
- detect(args.img_path, compiled_model, args.class_label)
|