123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <ctime>
- #include <memory>
- #include <string>
- #include <utility>
- #include <vector>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include "Interpreter.hpp"
- #include "ImageProcess.hpp"
- #include "MNNDefine.h"
- #include "Tensor.hpp"
- #include "keypoint_postprocess.h"
- using namespace MNN;
- namespace PaddleDetection {
- // Object KeyPoint Result
- struct KeyPointResult {
- // Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
- std::vector<float> keypoints;
- int num_joints = -1;
- };
- // Visualiztion KeyPoint Result
- cv::Mat VisualizeKptsResult(const cv::Mat& img,
- const std::vector<KeyPointResult>& results,
- const std::vector<int>& colormap,
- float threshold = 0.2);
- class KeyPointDetector {
- public:
- explicit KeyPointDetector(const std::string& model_path,
- int num_thread = 4,
- int input_height = 256,
- int input_width = 192,
- float score_threshold = 0.3,
- const int batch_size = 1,
- bool use_dark = true) {
- printf("config path: %s",
- model_path.substr(0, model_path.find_last_of('/') + 1).c_str());
- use_dark_ = use_dark;
- in_w = input_width;
- in_h = input_height;
- threshold_ = score_threshold;
- KeyPointDet_interpreter = std::shared_ptr<MNN::Interpreter>(
- MNN::Interpreter::createFromFile(model_path.c_str()));
- MNN::ScheduleConfig config;
- config.type = MNN_FORWARD_CPU;
- /*modeNum means gpuMode for GPU usage, Or means numThread for CPU usage.*/
- config.numThread = num_thread;
- // If type not fount, let it failed
- config.backupType = MNN_FORWARD_CPU;
- BackendConfig backendConfig;
- backendConfig.precision = static_cast<MNN::BackendConfig::PrecisionMode>(1);
- config.backendConfig = &backendConfig;
- KeyPointDet_session = KeyPointDet_interpreter->createSession(config);
- input_tensor =
- KeyPointDet_interpreter->getSessionInput(KeyPointDet_session, nullptr);
- }
- ~KeyPointDetector() {
- KeyPointDet_interpreter->releaseModel();
- KeyPointDet_interpreter->releaseSession(KeyPointDet_session);
- }
- // Load Paddle inference model
- void LoadModel(std::string model_file, int num_theads);
- // Run predictor
- void Predict(const std::vector<cv::Mat> imgs,
- std::vector<std::vector<float>>& center,
- std::vector<std::vector<float>>& scale,
- std::vector<KeyPointResult>* result = nullptr);
- bool use_dark() { return this->use_dark_; }
- inline float get_threshold() { return threshold_; };
- // const float mean_vals[3] = { 103.53f, 116.28f, 123.675f };
- // const float norm_vals[3] = { 0.017429f, 0.017507f, 0.017125f };
- const float mean_vals[3] = {0.f, 0.f, 0.f};
- const float norm_vals[3] = {1.f, 1.f, 1.f};
- int in_w = 128;
- int in_h = 256;
- private:
- // Postprocess result
- void Postprocess(std::vector<float>& output,
- std::vector<int>& output_shape,
- std::vector<int>& idxout,
- std::vector<int>& idx_shape,
- std::vector<KeyPointResult>* result,
- std::vector<std::vector<float>>& center,
- std::vector<std::vector<float>>& scale);
- std::vector<float> output_data_;
- std::vector<int> idx_data_;
- float threshold_;
- bool use_dark_;
- std::shared_ptr<MNN::Interpreter> KeyPointDet_interpreter;
- MNN::Session* KeyPointDet_session = nullptr;
- MNN::Tensor* input_tensor = nullptr;
- };
- } // namespace PaddleDetection
|