123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "core/general-server/op/yolov3_darknet53_270e_coco.h"
- #include "core/predictor/framework/infer.h"
- #include "core/predictor/framework/memory.h"
- #include "core/predictor/framework/resource.h"
- #include "core/util/include/timer.h"
- #include <algorithm>
- #include <iostream>
- #include <memory>
- #include <sstream>
- namespace baidu {
- namespace paddle_serving {
- namespace serving {
- using baidu::paddle_serving::Timer;
- using baidu::paddle_serving::predictor::InferManager;
- using baidu::paddle_serving::predictor::MempoolWrapper;
- using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
- using baidu::paddle_serving::predictor::general_model::Request;
- using baidu::paddle_serving::predictor::general_model::Response;
- using baidu::paddle_serving::predictor::general_model::Tensor;
- int yolov3_darknet53_270e_coco::inference() {
- VLOG(2) << "Going to run inference";
- const std::vector<std::string> pre_node_names = pre_names();
- if (pre_node_names.size() != 1) {
- LOG(ERROR) << "This op(" << op_name()
- << ") can only have one predecessor op, but received "
- << pre_node_names.size();
- return -1;
- }
- const std::string pre_name = pre_node_names[0];
- const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
- if (!input_blob) {
- LOG(ERROR) << "input_blob is nullptr,error";
- return -1;
- }
- uint64_t log_id = input_blob->GetLogId();
- VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
- GeneralBlob *output_blob = mutable_data<GeneralBlob>();
- if (!output_blob) {
- LOG(ERROR) << "output_blob is nullptr,error";
- return -1;
- }
- output_blob->SetLogId(log_id);
- if (!input_blob) {
- LOG(ERROR) << "(logid=" << log_id
- << ") Failed mutable depended argument, op:" << pre_name;
- return -1;
- }
- const TensorVector *in = &input_blob->tensor_vector;
- TensorVector *out = &output_blob->tensor_vector;
- int batch_size = input_blob->_batch_size;
- output_blob->_batch_size = batch_size;
- VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;
- Timer timeline;
- int64_t start = timeline.TimeStampUS();
- timeline.Start();
- // only support string type
- char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
- std::string base64str = total_input_ptr;
- cv::Mat img = Base2Mat(base64str);
- cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
- // preprocess
- std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
- preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
- im_shape_w, mean_, scale_, is_scale_);
- // create real_in
- TensorVector *real_in = new TensorVector();
- if (!real_in) {
- LOG(ERROR) << "real_in is nullptr,error";
- return -1;
- }
- int in_num = 0;
- size_t databuf_size = 0;
- void *databuf_data = NULL;
- char *databuf_char = NULL;
- // im_shape
- std::vector<float> im_shape{static_cast<float>(im_shape_h),
- static_cast<float>(im_shape_w)};
- databuf_size = 2 * sizeof(float);
- databuf_data = MempoolWrapper::instance().malloc(databuf_size);
- if (!databuf_data) {
- LOG(ERROR) << "Malloc failed, size: " << databuf_size;
- return -1;
- }
- memcpy(databuf_data, im_shape.data(), databuf_size);
- databuf_char = reinterpret_cast<char *>(databuf_data);
- paddle::PaddleBuf paddleBuf_0(databuf_char, databuf_size);
- paddle::PaddleTensor tensor_in_0;
- tensor_in_0.name = "im_shape";
- tensor_in_0.dtype = paddle::PaddleDType::FLOAT32;
- tensor_in_0.shape = {1, 2};
- tensor_in_0.lod = in->at(0).lod;
- tensor_in_0.data = paddleBuf_0;
- real_in->push_back(tensor_in_0);
- // image
- in_num = 1 * 3 * im_shape_h * im_shape_w;
- databuf_size = in_num * sizeof(float);
- databuf_data = MempoolWrapper::instance().malloc(databuf_size);
- if (!databuf_data) {
- LOG(ERROR) << "Malloc failed, size: " << databuf_size;
- return -1;
- }
- memcpy(databuf_data, input.data(), databuf_size);
- databuf_char = reinterpret_cast<char *>(databuf_data);
- paddle::PaddleBuf paddleBuf_1(databuf_char, databuf_size);
- paddle::PaddleTensor tensor_in_1;
- tensor_in_1.name = "image";
- tensor_in_1.dtype = paddle::PaddleDType::FLOAT32;
- tensor_in_1.shape = {1, 3, im_shape_h, im_shape_w};
- tensor_in_1.lod = in->at(0).lod;
- tensor_in_1.data = paddleBuf_1;
- real_in->push_back(tensor_in_1);
- // scale_factor
- std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
- databuf_size = 2 * sizeof(float);
- databuf_data = MempoolWrapper::instance().malloc(databuf_size);
- if (!databuf_data) {
- LOG(ERROR) << "Malloc failed, size: " << databuf_size;
- return -1;
- }
- memcpy(databuf_data, scale_factor.data(), databuf_size);
- databuf_char = reinterpret_cast<char *>(databuf_data);
- paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
- paddle::PaddleTensor tensor_in_2;
- tensor_in_2.name = "scale_factor";
- tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
- tensor_in_2.shape = {1, 2};
- tensor_in_2.lod = in->at(0).lod;
- tensor_in_2.data = paddleBuf_2;
- real_in->push_back(tensor_in_2);
- if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
- batch_size)) {
- LOG(ERROR) << "(logid=" << log_id
- << ") Failed do infer in fluid model: " << engine_name().c_str();
- return -1;
- }
- int64_t end = timeline.TimeStampUS();
- CopyBlobInfo(input_blob, output_blob);
- AddBlobInfo(output_blob, start);
- AddBlobInfo(output_blob, end);
- return 0;
- }
- void yolov3_darknet53_270e_coco::preprocess_det(const cv::Mat &img, float *data,
- float &scale_factor_h,
- float &scale_factor_w,
- int im_shape_h, int im_shape_w,
- const std::vector<float> &mean,
- const std::vector<float> &scale,
- const bool is_scale) {
- // scale_factor
- scale_factor_h =
- static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
- scale_factor_w =
- static_cast<float>(im_shape_w) / static_cast<float>(img.cols);
- // Resize
- cv::Mat resize_img;
- cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);
- // Normalize
- double e = 1.0;
- if (is_scale) {
- e /= 255.0;
- }
- cv::Mat img_fp;
- (resize_img).convertTo(img_fp, CV_32FC3, e);
- for (int h = 0; h < im_shape_h; h++) {
- for (int w = 0; w < im_shape_w; w++) {
- img_fp.at<cv::Vec3f>(h, w)[0] =
- (img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
- img_fp.at<cv::Vec3f>(h, w)[1] =
- (img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
- img_fp.at<cv::Vec3f>(h, w)[2] =
- (img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
- }
- }
- // Permute
- int rh = img_fp.rows;
- int rw = img_fp.cols;
- int rc = img_fp.channels();
- for (int i = 0; i < rc; ++i) {
- cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
- i);
- }
- }
- cv::Mat yolov3_darknet53_270e_coco::Base2Mat(std::string &base64_data) {
- cv::Mat img;
- std::string s_mat;
- s_mat = base64Decode(base64_data.data(), base64_data.size());
- std::vector<char> base64_img(s_mat.begin(), s_mat.end());
- img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
- return img;
- }
- std::string yolov3_darknet53_270e_coco::base64Decode(const char *Data,
- int DataByte) {
- const char DecodeTable[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 62, // '+'
- 0, 0, 0,
- 63, // '/'
- 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
- 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
- 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
- };
- std::string strDecode;
- int nValue;
- int i = 0;
- while (i < DataByte) {
- if (*Data != '\r' && *Data != '\n') {
- nValue = DecodeTable[*Data++] << 18;
- nValue += DecodeTable[*Data++] << 12;
- strDecode += (nValue & 0x00FF0000) >> 16;
- if (*Data != '=') {
- nValue += DecodeTable[*Data++] << 6;
- strDecode += (nValue & 0x0000FF00) >> 8;
- if (*Data != '=') {
- nValue += DecodeTable[*Data++];
- strDecode += nValue & 0x000000FF;
- }
- }
- i += 4;
- } else // 回车换行,跳过
- {
- Data++;
- i++;
- }
- }
- return strDecode;
- }
- DEFINE_OP(yolov3_darknet53_270e_coco);
- } // namespace serving
- } // namespace paddle_serving
- } // namespace baidu
|