123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- import cv2
- import math
- import numpy as np
- import paddle
- import yaml
- from det_keypoint_unite_utils import argsparser
- from preprocess import decode_image
- from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log
- from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint
- from visualize import visualize_pose
- from benchmark_utils import PaddleInferBenchmark
- from utils import get_current_memory_mb
- from keypoint_postprocess import translate_to_ori_images
- KEYPOINT_SUPPORT_MODELS = {
- 'HigherHRNet': 'keypoint_bottomup',
- 'HRNet': 'keypoint_topdown'
- }
- def predict_with_given_det(image, det_res, keypoint_detector,
- keypoint_batch_size, run_benchmark):
- keypoint_res = {}
- rec_images, records, det_rects = keypoint_detector.get_person_from_rect(
- image, det_res)
- if len(det_rects) == 0:
- keypoint_res['keypoint'] = [[], []]
- return keypoint_res
- keypoint_vector = []
- score_vector = []
- rect_vector = det_rects
- keypoint_results = keypoint_detector.predict_image(
- rec_images, run_benchmark, repeats=10, visual=False)
- keypoint_vector, score_vector = translate_to_ori_images(keypoint_results,
- np.array(records))
- keypoint_res['keypoint'] = [
- keypoint_vector.tolist(), score_vector.tolist()
- ] if len(keypoint_vector) > 0 else [[], []]
- keypoint_res['bbox'] = rect_vector
- return keypoint_res
- def topdown_unite_predict(detector,
- topdown_keypoint_detector,
- image_list,
- keypoint_batch_size=1,
- save_res=False):
- det_timer = detector.get_timer()
- store_res = []
- for i, img_file in enumerate(image_list):
- # Decode image in advance in det + pose prediction
- det_timer.preprocess_time_s.start()
- image, _ = decode_image(img_file, {})
- det_timer.preprocess_time_s.end()
- if FLAGS.run_benchmark:
- results = detector.predict_image(
- [image], run_benchmark=True, repeats=10)
- cm, gm, gu = get_current_memory_mb()
- detector.cpu_mem += cm
- detector.gpu_mem += gm
- detector.gpu_util += gu
- else:
- results = detector.predict_image([image], visual=False)
- results = detector.filter_box(results, FLAGS.det_threshold)
- if results['boxes_num'] > 0:
- keypoint_res = predict_with_given_det(
- image, results, topdown_keypoint_detector, keypoint_batch_size,
- FLAGS.run_benchmark)
- if save_res:
- save_name = img_file if isinstance(img_file, str) else i
- store_res.append([
- save_name, keypoint_res['bbox'],
- [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
- ])
- else:
- results["keypoint"] = [[], []]
- keypoint_res = results
- if FLAGS.run_benchmark:
- cm, gm, gu = get_current_memory_mb()
- topdown_keypoint_detector.cpu_mem += cm
- topdown_keypoint_detector.gpu_mem += gm
- topdown_keypoint_detector.gpu_util += gu
- else:
- if not os.path.exists(FLAGS.output_dir):
- os.makedirs(FLAGS.output_dir)
- visualize_pose(
- img_file,
- keypoint_res,
- visual_thresh=FLAGS.keypoint_threshold,
- save_dir=FLAGS.output_dir)
- if save_res:
- """
- 1) store_res: a list of image_data
- 2) image_data: [imageid, rects, [keypoints, scores]]
- 3) rects: list of rect [xmin, ymin, xmax, ymax]
- 4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
- 5) scores: mean of all joint conf
- """
- with open("det_keypoint_unite_image_results.json", 'w') as wf:
- json.dump(store_res, wf, indent=4)
- def topdown_unite_predict_video(detector,
- topdown_keypoint_detector,
- camera_id,
- keypoint_batch_size=1,
- save_res=False):
- video_name = 'output.mp4'
- if camera_id != -1:
- capture = cv2.VideoCapture(camera_id)
- else:
- capture = cv2.VideoCapture(FLAGS.video_file)
- video_name = os.path.split(FLAGS.video_file)[-1]
- # Get Video info : resolution, fps, frame count
- width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
- height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
- fps = int(capture.get(cv2.CAP_PROP_FPS))
- frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
- print("fps: %d, frame_count: %d" % (fps, frame_count))
- if not os.path.exists(FLAGS.output_dir):
- os.makedirs(FLAGS.output_dir)
- out_path = os.path.join(FLAGS.output_dir, video_name)
- fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
- writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
- index = 0
- store_res = []
- keypoint_smoothing = KeypointSmoothing(
- width, height, filter_type=FLAGS.filter_type, beta=0.05)
- while (1):
- ret, frame = capture.read()
- if not ret:
- break
- index += 1
- print('detect frame: %d' % (index))
- frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- results = detector.predict_image([frame2], visual=False)
- results = detector.filter_box(results, FLAGS.det_threshold)
- if results['boxes_num'] == 0:
- writer.write(frame)
- continue
- keypoint_res = predict_with_given_det(
- frame2, results, topdown_keypoint_detector, keypoint_batch_size,
- FLAGS.run_benchmark)
- if FLAGS.smooth and len(keypoint_res['keypoint'][0]) == 1:
- current_keypoints = np.array(keypoint_res['keypoint'][0][0])
- smooth_keypoints = keypoint_smoothing.smooth_process(
- current_keypoints)
- keypoint_res['keypoint'][0][0] = smooth_keypoints.tolist()
- im = visualize_pose(
- frame,
- keypoint_res,
- visual_thresh=FLAGS.keypoint_threshold,
- returnimg=True)
- if save_res:
- store_res.append([
- index, keypoint_res['bbox'],
- [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
- ])
- writer.write(im)
- if camera_id != -1:
- cv2.imshow('Mask Detection', im)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- writer.release()
- print('output_video saved to: {}'.format(out_path))
- if save_res:
- """
- 1) store_res: a list of frame_data
- 2) frame_data: [frameid, rects, [keypoints, scores]]
- 3) rects: list of rect [xmin, ymin, xmax, ymax]
- 4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
- 5) scores: mean of all joint conf
- """
- with open("det_keypoint_unite_video_results.json", 'w') as wf:
- json.dump(store_res, wf, indent=4)
- class KeypointSmoothing(object):
- # The following code are modified from:
- # https://github.com/jaantollander/OneEuroFilter
- def __init__(self,
- width,
- height,
- filter_type,
- alpha=0.5,
- fc_d=0.1,
- fc_min=0.1,
- beta=0.1,
- thres_mult=0.3):
- super(KeypointSmoothing, self).__init__()
- self.image_width = width
- self.image_height = height
- self.threshold = np.array([
- 0.005, 0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01,
- 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01
- ]) * thres_mult
- self.filter_type = filter_type
- self.alpha = alpha
- self.dx_prev_hat = None
- self.x_prev_hat = None
- self.fc_d = fc_d
- self.fc_min = fc_min
- self.beta = beta
- if self.filter_type == 'OneEuro':
- self.smooth_func = self.one_euro_filter
- elif self.filter_type == 'EMA':
- self.smooth_func = self.ema_filter
- else:
- raise ValueError('filter type must be one_euro or ema')
- def smooth_process(self, current_keypoints):
- if self.x_prev_hat is None:
- self.x_prev_hat = current_keypoints[:, :2]
- self.dx_prev_hat = np.zeros(current_keypoints[:, :2].shape)
- return current_keypoints
- else:
- result = current_keypoints
- num_keypoints = len(current_keypoints)
- for i in range(num_keypoints):
- result[i, :2] = self.smooth(current_keypoints[i, :2],
- self.threshold[i], i)
- return result
- def smooth(self, current_keypoint, threshold, index):
- distance = np.sqrt(
- np.square((current_keypoint[0] - self.x_prev_hat[index][0]) /
- self.image_width) + np.square((current_keypoint[
- 1] - self.x_prev_hat[index][1]) / self.image_height))
- if distance < threshold:
- result = self.x_prev_hat[index]
- else:
- result = self.smooth_func(current_keypoint, self.x_prev_hat[index],
- index)
- return result
- def one_euro_filter(self, x_cur, x_pre, index):
- te = 1
- self.alpha = self.smoothing_factor(te, self.fc_d)
- dx_cur = (x_cur - x_pre) / te
- dx_cur_hat = self.exponential_smoothing(dx_cur, self.dx_prev_hat[index])
- fc = self.fc_min + self.beta * np.abs(dx_cur_hat)
- self.alpha = self.smoothing_factor(te, fc)
- x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
- self.dx_prev_hat[index] = dx_cur_hat
- self.x_prev_hat[index] = x_cur_hat
- return x_cur_hat
- def ema_filter(self, x_cur, x_pre, index):
- x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
- self.x_prev_hat[index] = x_cur_hat
- return x_cur_hat
- def smoothing_factor(self, te, fc):
- r = 2 * math.pi * fc * te
- return r / (r + 1)
- def exponential_smoothing(self, x_cur, x_pre, index=0):
- return self.alpha * x_cur + (1 - self.alpha) * x_pre
- def main():
- deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml')
- with open(deploy_file) as f:
- yml_conf = yaml.safe_load(f)
- arch = yml_conf['arch']
- detector_func = 'Detector'
- if arch == 'PicoDet':
- detector_func = 'DetectorPicoDet'
- detector = eval(detector_func)(FLAGS.det_model_dir,
- device=FLAGS.device,
- run_mode=FLAGS.run_mode,
- trt_min_shape=FLAGS.trt_min_shape,
- trt_max_shape=FLAGS.trt_max_shape,
- trt_opt_shape=FLAGS.trt_opt_shape,
- trt_calib_mode=FLAGS.trt_calib_mode,
- cpu_threads=FLAGS.cpu_threads,
- enable_mkldnn=FLAGS.enable_mkldnn,
- threshold=FLAGS.det_threshold)
- topdown_keypoint_detector = KeyPointDetector(
- FLAGS.keypoint_model_dir,
- device=FLAGS.device,
- run_mode=FLAGS.run_mode,
- batch_size=FLAGS.keypoint_batch_size,
- trt_min_shape=FLAGS.trt_min_shape,
- trt_max_shape=FLAGS.trt_max_shape,
- trt_opt_shape=FLAGS.trt_opt_shape,
- trt_calib_mode=FLAGS.trt_calib_mode,
- cpu_threads=FLAGS.cpu_threads,
- enable_mkldnn=FLAGS.enable_mkldnn,
- use_dark=FLAGS.use_dark)
- keypoint_arch = topdown_keypoint_detector.pred_config.arch
- assert KEYPOINT_SUPPORT_MODELS[
- keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.'
- # predict from video file or camera video stream
- if FLAGS.video_file is not None or FLAGS.camera_id != -1:
- topdown_unite_predict_video(detector, topdown_keypoint_detector,
- FLAGS.camera_id, FLAGS.keypoint_batch_size,
- FLAGS.save_res)
- else:
- # predict from image
- img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
- topdown_unite_predict(detector, topdown_keypoint_detector, img_list,
- FLAGS.keypoint_batch_size, FLAGS.save_res)
- if not FLAGS.run_benchmark:
- detector.det_times.info(average=True)
- topdown_keypoint_detector.det_times.info(average=True)
- else:
- mode = FLAGS.run_mode
- det_model_dir = FLAGS.det_model_dir
- det_model_info = {
- 'model_name': det_model_dir.strip('/').split('/')[-1],
- 'precision': mode.split('_')[-1]
- }
- bench_log(detector, img_list, det_model_info, name='Det')
- keypoint_model_dir = FLAGS.keypoint_model_dir
- keypoint_model_info = {
- 'model_name': keypoint_model_dir.strip('/').split('/')[-1],
- 'precision': mode.split('_')[-1]
- }
- bench_log(topdown_keypoint_detector, img_list, keypoint_model_info,
- FLAGS.keypoint_batch_size, 'KeyPoint')
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- print_arguments(FLAGS)
- FLAGS.device = FLAGS.device.upper()
- assert FLAGS.device in ['CPU', 'GPU', 'XPU'
- ], "device should be CPU, GPU or XPU"
- main()
|