12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <ctime>
- #include <memory>
- #include <string>
- #include <utility>
- #include <vector>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include "paddle_inference_api.h" // NOLINT
- #include "include/config_parser.h"
- #include "include/preprocess_op.h"
- #include "include/utils.h"
- using namespace paddle_infer; // NOLINT
- namespace PaddleDetection {
- class JDEPredictor {
- public:
- explicit JDEPredictor(const std::string& device = "CPU",
- const std::string& model_dir = "",
- const double threshold = -1.,
- const std::string& run_mode = "paddle",
- const int gpu_id = 0,
- const bool use_mkldnn = false,
- const int cpu_threads = 1,
- bool trt_calib_mode = false,
- const int min_box_area = 200) {
- this->device_ = device;
- this->gpu_id_ = gpu_id;
- this->use_mkldnn_ = use_mkldnn;
- this->cpu_math_library_num_threads_ = cpu_threads;
- this->trt_calib_mode_ = trt_calib_mode;
- this->min_box_area_ = min_box_area;
- config_.load_config(model_dir);
- this->min_subgraph_size_ = config_.min_subgraph_size_;
- preprocessor_.Init(config_.preprocess_info_);
- LoadModel(model_dir, run_mode);
- this->conf_thresh_ = config_.conf_thresh_;
- }
- // Load Paddle inference model
- void LoadModel(const std::string& model_dir,
- const std::string& run_mode = "paddle");
- // Run predictor
- void Predict(const std::vector<cv::Mat> imgs,
- const double threshold = 0.5,
- MOTResult* result = nullptr,
- std::vector<double>* times = nullptr);
- private:
- std::string device_ = "CPU";
- float threhold = 0.5;
- int gpu_id_ = 0;
- bool use_mkldnn_ = false;
- int cpu_math_library_num_threads_ = 1;
- int min_subgraph_size_ = 3;
- bool trt_calib_mode_ = false;
- // Preprocess image and copy data to input buffer
- void Preprocess(const cv::Mat& image_mat);
- // Postprocess result
- void Postprocess(const cv::Mat dets, const cv::Mat emb, MOTResult* result);
- std::shared_ptr<Predictor> predictor_;
- Preprocessor preprocessor_;
- ImageBlob inputs_;
- std::vector<float> bbox_data_;
- std::vector<float> emb_data_;
- double threshold_;
- ConfigPaser config_;
- float min_box_area_;
- float conf_thresh_;
- };
- } // namespace PaddleDetection
|