123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- import cv2
- import os
- import json
- from tqdm import tqdm
- import numpy as np
- provinces = [
- "皖", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "京", "闽", "赣",
- "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
- "新", "警", "学", "O"
- ]
- alphabets = [
- 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q',
- 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'O'
- ]
- ads = [
- 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q',
- 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5',
- '6', '7', '8', '9', 'O'
- ]
- def make_label_2020(img_dir, save_gt_folder, phase):
- crop_img_save_dir = os.path.join(save_gt_folder, phase, 'crop_imgs')
- os.makedirs(crop_img_save_dir, exist_ok=True)
- f_det = open(
- os.path.join(save_gt_folder, phase, 'det.txt'), 'w', encoding='utf-8')
- f_rec = open(
- os.path.join(save_gt_folder, phase, 'rec.txt'), 'w', encoding='utf-8')
- i = 0
- for filename in tqdm(os.listdir(os.path.join(img_dir, phase))):
- str_list = filename.split('-')
- if len(str_list) < 5:
- continue
- coord_list = str_list[3].split('_')
- txt_list = str_list[4].split('_')
- boxes = []
- for coord in coord_list:
- boxes.append([int(x) for x in coord.split("&")])
- boxes = [boxes[2], boxes[3], boxes[0], boxes[1]]
- lp_number = provinces[int(txt_list[0])] + alphabets[int(txt_list[
- 1])] + ''.join([ads[int(x)] for x in txt_list[2:]])
- # det
- det_info = [{'points': boxes, 'transcription': lp_number}]
- f_det.write('{}\t{}\n'.format(
- os.path.join("CCPD2020/ccpd_green", phase, filename),
- json.dumps(
- det_info, ensure_ascii=False)))
- # rec
- boxes = np.float32(boxes)
- img = cv2.imread(os.path.join(img_dir, phase, filename))
- # crop_img = img[int(boxes[:,1].min()):int(boxes[:,1].max()),int(boxes[:,0].min()):int(boxes[:,0].max())]
- crop_img = get_rotate_crop_image(img, boxes)
- crop_img_save_filename = '{}_{}.jpg'.format(i, '_'.join(txt_list))
- crop_img_save_path = os.path.join(crop_img_save_dir,
- crop_img_save_filename)
- cv2.imwrite(crop_img_save_path, crop_img)
- f_rec.write('{}/{}/crop_imgs/{}\t{}\n'.format(
- "CCPD2020/PPOCR", phase, crop_img_save_filename, lp_number))
- i += 1
- f_det.close()
- f_rec.close()
- def make_label_2019(list_dir, save_gt_folder, phase):
- crop_img_save_dir = os.path.join(save_gt_folder, phase, 'crop_imgs')
- os.makedirs(crop_img_save_dir, exist_ok=True)
- f_det = open(
- os.path.join(save_gt_folder, phase, 'det.txt'), 'w', encoding='utf-8')
- f_rec = open(
- os.path.join(save_gt_folder, phase, 'rec.txt'), 'w', encoding='utf-8')
- with open(os.path.join(list_dir, phase + ".txt"), 'r') as rf:
- imglist = rf.readlines()
- i = 0
- for idx, filename in enumerate(imglist):
- if idx % 1000 == 0:
- print("{}/{}".format(idx, len(imglist)))
- filename = filename.strip()
- str_list = filename.split('-')
- if len(str_list) < 5:
- continue
- coord_list = str_list[3].split('_')
- txt_list = str_list[4].split('_')
- boxes = []
- for coord in coord_list:
- boxes.append([int(x) for x in coord.split("&")])
- boxes = [boxes[2], boxes[3], boxes[0], boxes[1]]
- lp_number = provinces[int(txt_list[0])] + alphabets[int(txt_list[
- 1])] + ''.join([ads[int(x)] for x in txt_list[2:]])
- # det
- det_info = [{'points': boxes, 'transcription': lp_number}]
- f_det.write('{}\t{}\n'.format(
- os.path.join("CCPD2019", filename),
- json.dumps(
- det_info, ensure_ascii=False)))
- # rec
- boxes = np.float32(boxes)
- imgpath = os.path.join(list_dir[:-7], filename)
- img = cv2.imread(imgpath)
- # crop_img = img[int(boxes[:,1].min()):int(boxes[:,1].max()),int(boxes[:,0].min()):int(boxes[:,0].max())]
- crop_img = get_rotate_crop_image(img, boxes)
- crop_img_save_filename = '{}_{}.jpg'.format(i, '_'.join(txt_list))
- crop_img_save_path = os.path.join(crop_img_save_dir,
- crop_img_save_filename)
- cv2.imwrite(crop_img_save_path, crop_img)
- f_rec.write('{}/{}/crop_imgs/{}\t{}\n'.format(
- "CCPD2019/PPOCR", phase, crop_img_save_filename, lp_number))
- i += 1
- f_det.close()
- f_rec.close()
- def get_rotate_crop_image(img, points):
- '''
- img_height, img_width = img.shape[0:2]
- left = int(np.min(points[:, 0]))
- right = int(np.max(points[:, 0]))
- top = int(np.min(points[:, 1]))
- bottom = int(np.max(points[:, 1]))
- img_crop = img[top:bottom, left:right, :].copy()
- points[:, 0] = points[:, 0] - left
- points[:, 1] = points[:, 1] - top
- '''
- assert len(points) == 4, "shape of points must be 4*2"
- img_crop_width = int(
- max(
- np.linalg.norm(points[0] - points[1]),
- np.linalg.norm(points[2] - points[3])))
- img_crop_height = int(
- max(
- np.linalg.norm(points[0] - points[3]),
- np.linalg.norm(points[1] - points[2])))
- pts_std = np.float32([[0, 0], [img_crop_width, 0],
- [img_crop_width, img_crop_height],
- [0, img_crop_height]])
- M = cv2.getPerspectiveTransform(points, pts_std)
- dst_img = cv2.warpPerspective(
- img,
- M, (img_crop_width, img_crop_height),
- borderMode=cv2.BORDER_REPLICATE,
- flags=cv2.INTER_CUBIC)
- dst_img_height, dst_img_width = dst_img.shape[0:2]
- if dst_img_height * 1.0 / dst_img_width >= 1.5:
- dst_img = np.rot90(dst_img)
- return dst_img
- img_dir = './CCPD2020/ccpd_green'
- save_gt_folder = './CCPD2020/PPOCR'
- # phase = 'train' # change to val and test to make val dataset and test dataset
- for phase in ['train', 'val', 'test']:
- make_label_2020(img_dir, save_gt_folder, phase)
- list_dir = './CCPD2019/splits/'
- save_gt_folder = './CCPD2019/PPOCR'
- for phase in ['train', 'val', 'test']:
- make_label_2019(list_dir, save_gt_folder, phase)
|