English | 简体中文
Environment Preparation: PaddleDetection version >= release/2.5 or develop
Installation of PaddlePaddle and PaddleDetection
# PaddlePaddle CUDA10.1
python -m pip install paddlepaddle-gpu==2.2.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# PaddlePaddle CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
# Clone PaddleDetectionrepositories
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git
# Installing dependencies
cd PaddleDetection
pip install -r requirements.txt
TensorRT version
. You can download and install it from the PaddlePaddle Installation Package or follow the Instructions or use docker, or self-compiling to prepare the environment.PP-Vehicle provides object detection, attribute recognition, behaviour recognition and ReID pre-trained models for different applications. Developers can download them directly.
Task | End-to(ms) | Model Solution | Model Size |
---|---|---|---|
Vehicle Detection(high precision) | 25.7ms | Multi-Object Tracking | 182M |
Vehicle Detection(Lightweight) | 13.2ms | Multi-Object Tracking | 27M |
Vehicle Tracking(high precision) | 40ms | Multi-Object Tracking | 182M |
Vehicle Tracking(Lightweight) | 25ms | Multi-Object Tracking | 27M |
License plate recognition | 4.68ms | License plate recognition License plate character recognition |
Vehicle Detection:3.9M License plate character recognition: 12M |
Vehicle Attribute Recognition | 7.31ms | Vehicle Attribute | 7.2M |
Download the model and unzip it into the . /output_inference
folder.
In the configuration file, the model path defaults to the download path of the model. If the user does not change it, the corresponding model will be downloaded automatically upon inference.
Notes:
PP-Vehicle related configuration locates in deploy/pipeline/config/infer_cfg_ppvehicle.yml
. Developers need to set specific task types to use different features.
The features and corresponding task types are as follows.
Input | Feature | Task | Config |
---|---|---|---|
Image | Attribute Recognition | Object Detection Attribute Recognition | DET ATTR |
Single-camera video | Attribute Recognition | Multi-Object Tracking Attribute Recognition | MOT ATTR |
Single-camera video | License-plate Recognition | Multi-Object Tracking License-plate Recognition | MOT VEHICLEPLATE |
Take attribute recognition based on video input as an example: Its task type includes multi-object tracking and attributes recognition. The specific configuration is as follows.
crop_thresh: 0.5
visual: True
warmup_frame: 50
MOT:
model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip
tracker_config: deploy/pipeline/config/tracker_config.yml
batch_size: 1
enable: True
VEHICLE_ATTR:
model_dir: https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip
batch_size: 8
color_threshold: 0.5
type_threshold: 0.5
enable: True
Notes:
-o MOT.model_dir=ppyoloe/
after --config, or manually modify the corresponding model path in the configuration file. For more details, please refer to the following parameter descriptionsinfer_cfg_ppvehicle.yml
# Example:In vehicle detection,specify configuration file path and test image
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml --image_file=test_image.jpg --device=gpu
# Example:In license plate recognition,directly configure the examples
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_plate.yml --video_file=test_video.mp4 --device=gpu
# Example:In vehicle tracking,specify configuration file path and test video, Turn on the MOT model and modify the model path on the command line, the model path specified on the command line has higher priority than the configuration file
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_ppvehicle.yml -o MOT.enable=True MOT.model_dir=ppyoloe_infer/ --video_file=test_video.mp4 --device=gpu
# Example:In vehicle illegal action analysis,specify configuration file path and test video, 命令行中指定违停区域设置、违停时间判断。
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_illegal_parking.yml \
--video_file=../car_test.mov \
--device=gpu \
--draw_center_traj \
--illegal_parking_time=3 \
--region_type=custom \
--region_polygon 600 300 1300 300 1300 800 600 800
For rtsp pull stream, use --rtsp RTSP [RTSP ...] parameter to specify one or more rtsp streams. Separate the multiple addresses with a space, or replace the video address directly after the video_file with the rtsp stream address), examples as follows
# Example: Single video stream for pedestrian attribute recognition
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_human_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE] --device=gpu
# Example: Multiple-video stream for pedestrian attribute recognition
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_human_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE1] rtsp://[YOUR_RTSP_SITE2] --device=gpu |
For rtsp push stream, use --pushurl rtsp:[IP] parameter to push stream to a IP set, and you can visualize the output video by VLC Player with the open network
funciton. the whole url path is rtsp:[IP]/videoname
, the videoname here is the basename of the video file to infer, and the default of videoname is output
when the video come from local camera and there is no video name.
# Example:license plate recognition,in this example the whole url path is: rtsp://[YOUR_SERVER_IP]:8554/test_video
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_vehicle_plate.yml --video_file=test_video.mp4 --device=gpu --pushurl rtsp://[YOUR_SERVER_IP]:8554
Note:
Due to the large gap in computing power of the Jetson platform compared to the server, we suggest:
ppyoloe_s: https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip
is recommendedskip_frame_num: 3
With this recommended configuration, it is possible to achieve higher speeds on the TX2 platform. It has been tested with attribute case, with speeds up to 20fps. The configuration file can be modified directly (recommended) or from the command line (not recommended due to its long fields).
#
Parameters | Necessity | Implications |
---|---|---|
--config | Yes | Path to configuration file |
-o | Option | Overwrite the corresponding configuration in the configuration file |
--image_file | Option | Images to be predicted |
--image_dir | Option | Path to the images folder to be predicted |
--video_file | Option | Video to be predicted, or rtsp stream address (rtsp parameter recommended) |
--rtsp | Option | rtsp video stream address, supports one or more simultaneous streams input |
--camera_id | Option | The camera ID for prediction, default is -1 ( for no camera prediction, can be set to 0 - (number of cameras - 1) ), press q in the visualization interface during the prediction process to output the prediction result to: output/output.mp4 |
--device | Option | Running device, options include CPU/GPU/XPU , and the default is CPU . |
--pushurl | Option | push the output video to rtsp stream, normaly start with rtsp:// ; this has higher priority than local video save, while this is set, pipeline will not save local visualize video, the default is "", means this will not work now. |
--output_dir | Option | The root directory for the visualization results, and the default is output/ |
--run_mode | Option | For GPU, the default is paddle, with (paddle/trt_fp32/trt_fp16/trt_int8) as optional |
--enable_mkldnn | Option | Whether to enable MKLDNN acceleration in CPU prediction, the default is False |
--cpu_threads | Option | Set the number of cpu threads, and the default is 1 |
--trt_calib_mode | Option | Whether TensorRT uses the calibration function, and the default is False; set to True when using TensorRT's int8 function and False when using the PaddleSlim quantized model |
--do_entrance_counting | Option | Whether to count entrance/exit traffic flows, the default is False |
--draw_center_traj | Option | Whether to draw center trajectory, the default is False |
--region_type | Option | 'horizontal' (default), 'vertical': traffic count direction; 'custom': set illegal parking area |
--region_polygon | Option | Set the coordinates of the polygon multipoint in the illegal parking area. No default. |
--illegal_parking_time | Option | Set the time threshold for illegal parking in seconds (s), -1 (default) indicates no check |
The overall solution for PP-Vehicle v2 is shown in the graph below:
###
Use vehicle tracking model (high precision) PP-YOLOE L to determine whether the parking is illegal based on the vehicle's trajectory and the designated illegal parking area. If it is illegal parking, display the illegal parking plate number.
For details, please refer to Illegal Parking Detection