123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <sstream>
- // for setprecision
- #include <chrono>
- #include <iomanip>
- #include "include/object_detector.h"
- namespace PaddleDetection {
- // Load Model and create model predictor
- void ObjectDetector::LoadModel(std::string model_file, int num_theads) {
- MobileConfig config;
- config.set_threads(num_theads);
- config.set_model_from_file(model_file + "/model.nb");
- config.set_power_mode(LITE_POWER_HIGH);
- predictor_ = CreatePaddlePredictor<MobileConfig>(config);
- }
- // Visualiztion MaskDetector results
- cv::Mat VisualizeResult(const cv::Mat& img,
- const std::vector<PaddleDetection::ObjectResult>& results,
- const std::vector<std::string>& lables,
- const std::vector<int>& colormap,
- const bool is_rbox = false) {
- cv::Mat vis_img = img.clone();
- for (int i = 0; i < results.size(); ++i) {
- // Configure color and text size
- std::ostringstream oss;
- oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
- oss << lables[results[i].class_id] << " ";
- oss << results[i].confidence;
- std::string text = oss.str();
- int c1 = colormap[3 * results[i].class_id + 0];
- int c2 = colormap[3 * results[i].class_id + 1];
- int c3 = colormap[3 * results[i].class_id + 2];
- cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
- int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
- double font_scale = 0.5f;
- float thickness = 0.5;
- cv::Size text_size =
- cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
- cv::Point origin;
- if (is_rbox) {
- // Draw object, text, and background
- for (int k = 0; k < 4; k++) {
- cv::Point pt1 = cv::Point(results[i].rect[(k * 2) % 8],
- results[i].rect[(k * 2 + 1) % 8]);
- cv::Point pt2 = cv::Point(results[i].rect[(k * 2 + 2) % 8],
- results[i].rect[(k * 2 + 3) % 8]);
- cv::line(vis_img, pt1, pt2, roi_color, 2);
- }
- } else {
- int w = results[i].rect[2] - results[i].rect[0];
- int h = results[i].rect[3] - results[i].rect[1];
- cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[1], w, h);
- // Draw roi object, text, and background
- cv::rectangle(vis_img, roi, roi_color, 2);
- }
- origin.x = results[i].rect[0];
- origin.y = results[i].rect[1];
- // Configure text background
- cv::Rect text_back = cv::Rect(results[i].rect[0],
- results[i].rect[1] - text_size.height,
- text_size.width,
- text_size.height);
- // Draw text, and background
- cv::rectangle(vis_img, text_back, roi_color, -1);
- cv::putText(vis_img,
- text,
- origin,
- font_face,
- font_scale,
- cv::Scalar(255, 255, 255),
- thickness);
- }
- return vis_img;
- }
- void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
- // Clone the image : keep the original mat for postprocess
- cv::Mat im = ori_im.clone();
- cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
- preprocessor_.Run(&im, &inputs_);
- }
- void ObjectDetector::Postprocess(const std::vector<cv::Mat> mats,
- std::vector<PaddleDetection::ObjectResult>* result,
- std::vector<int> bbox_num,
- bool is_rbox = false) {
- result->clear();
- int start_idx = 0;
- for (int im_id = 0; im_id < mats.size(); im_id++) {
- cv::Mat raw_mat = mats[im_id];
- int rh = 1;
- int rw = 1;
- if (config_.arch_ == "Face") {
- rh = raw_mat.rows;
- rw = raw_mat.cols;
- }
- for (int j = start_idx; j < start_idx + bbox_num[im_id]; j++) {
- if (is_rbox) {
- // Class id
- int class_id = static_cast<int>(round(output_data_[0 + j * 10]));
- // Confidence score
- float score = output_data_[1 + j * 10];
- int x1 = (output_data_[2 + j * 10] * rw);
- int y1 = (output_data_[3 + j * 10] * rh);
- int x2 = (output_data_[4 + j * 10] * rw);
- int y2 = (output_data_[5 + j * 10] * rh);
- int x3 = (output_data_[6 + j * 10] * rw);
- int y3 = (output_data_[7 + j * 10] * rh);
- int x4 = (output_data_[8 + j * 10] * rw);
- int y4 = (output_data_[9 + j * 10] * rh);
- PaddleDetection::ObjectResult result_item;
- result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4};
- result_item.class_id = class_id;
- result_item.confidence = score;
- result->push_back(result_item);
- } else {
- // Class id
- int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
- // Confidence score
- float score = output_data_[1 + j * 6];
- int xmin = (output_data_[2 + j * 6] * rw);
- int ymin = (output_data_[3 + j * 6] * rh);
- int xmax = (output_data_[4 + j * 6] * rw);
- int ymax = (output_data_[5 + j * 6] * rh);
- int wd = xmax - xmin;
- int hd = ymax - ymin;
- PaddleDetection::ObjectResult result_item;
- result_item.rect = {xmin, ymin, xmax, ymax};
- result_item.class_id = class_id;
- result_item.confidence = score;
- result->push_back(result_item);
- }
- }
- start_idx += bbox_num[im_id];
- }
- }
- void ObjectDetector::Predict(const std::vector<cv::Mat>& imgs,
- const double threshold,
- const int warmup,
- const int repeats,
- std::vector<PaddleDetection::ObjectResult>* result,
- std::vector<int>* bbox_num,
- std::vector<double>* times) {
- auto preprocess_start = std::chrono::steady_clock::now();
- int batch_size = imgs.size();
- // in_data_batch
- std::vector<float> in_data_all;
- std::vector<float> im_shape_all(batch_size * 2);
- std::vector<float> scale_factor_all(batch_size * 2);
- // Preprocess image
- for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
- cv::Mat im = imgs.at(bs_idx);
- Preprocess(im);
- im_shape_all[bs_idx * 2] = inputs_.im_shape_[0];
- im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1];
- scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0];
- scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1];
- // TODO: reduce cost time
- in_data_all.insert(
- in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
- }
- auto preprocess_end = std::chrono::steady_clock::now();
- std::vector<const float *> output_data_list_;
- // Prepare input tensor
- auto input_names = predictor_->GetInputNames();
- for (const auto& tensor_name : input_names) {
- auto in_tensor = predictor_->GetInputByName(tensor_name);
- if (tensor_name == "image") {
- int rh = inputs_.in_net_shape_[0];
- int rw = inputs_.in_net_shape_[1];
- in_tensor->Resize({batch_size, 3, rh, rw});
- auto* inptr = in_tensor->mutable_data<float>();
- std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
- } else if (tensor_name == "im_shape") {
- in_tensor->Resize({batch_size, 2});
- auto* inptr = in_tensor->mutable_data<float>();
- std::copy_n(im_shape_all.data(), im_shape_all.size(), inptr);
- } else if (tensor_name == "scale_factor") {
- in_tensor->Resize({batch_size, 2});
- auto* inptr = in_tensor->mutable_data<float>();
- std::copy_n(scale_factor_all.data(), scale_factor_all.size(), inptr);
- }
- }
- // Run predictor
- // warmup
- for (int i = 0; i < warmup; i++) {
- predictor_->Run();
- // Get output tensor
- auto output_names = predictor_->GetOutputNames();
- if (config_.arch_ == "PicoDet") {
- for (int j = 0; j < output_names.size(); j++) {
- auto output_tensor = predictor_->GetTensor(output_names[j]);
- const float* outptr = output_tensor->data<float>();
- std::vector<int64_t> output_shape = output_tensor->shape();
- output_data_list_.push_back(outptr);
- }
- } else {
- auto out_tensor = predictor_->GetTensor(output_names[0]);
- auto out_bbox_num = predictor_->GetTensor(output_names[1]);
- }
- }
- bool is_rbox = false;
- auto inference_start = std::chrono::steady_clock::now();
- for (int i = 0; i < repeats; i++) {
- predictor_->Run();
- }
- auto inference_end = std::chrono::steady_clock::now();
- auto postprocess_start = std::chrono::steady_clock::now();
- // Get output tensor
- output_data_list_.clear();
- int num_class = 80;
- int reg_max = 7;
- auto output_names = predictor_->GetOutputNames();
- // TODO: Unified model output.
- if (config_.arch_ == "PicoDet") {
- for (int i = 0; i < output_names.size(); i++) {
- auto output_tensor = predictor_->GetTensor(output_names[i]);
- const float* outptr = output_tensor->data<float>();
- std::vector<int64_t> output_shape = output_tensor->shape();
- if (i == 0) {
- num_class = output_shape[2];
- }
- if (i == config_.fpn_stride_.size()) {
- reg_max = output_shape[2] / 4 - 1;
- }
- output_data_list_.push_back(outptr);
- }
- } else {
- auto output_tensor = predictor_->GetTensor(output_names[0]);
- auto output_shape = output_tensor->shape();
- auto out_bbox_num = predictor_->GetTensor(output_names[1]);
- auto out_bbox_num_shape = out_bbox_num->shape();
- // Calculate output length
- int output_size = 1;
- for (int j = 0; j < output_shape.size(); ++j) {
- output_size *= output_shape[j];
- }
- is_rbox = output_shape[output_shape.size() - 1] % 10 == 0;
- if (output_size < 6) {
- std::cerr << "[WARNING] No object detected." << std::endl;
- }
- output_data_.resize(output_size);
- std::copy_n(
- output_tensor->mutable_data<float>(), output_size, output_data_.data());
- int out_bbox_num_size = 1;
- for (int j = 0; j < out_bbox_num_shape.size(); ++j) {
- out_bbox_num_size *= out_bbox_num_shape[j];
- }
- out_bbox_num_data_.resize(out_bbox_num_size);
- std::copy_n(out_bbox_num->mutable_data<int>(),
- out_bbox_num_size,
- out_bbox_num_data_.data());
- }
- // Postprocessing result
- result->clear();
- if (config_.arch_ == "PicoDet") {
- PaddleDetection::PicoDetPostProcess(
- result, output_data_list_, config_.fpn_stride_,
- inputs_.im_shape_, inputs_.scale_factor_,
- config_.nms_info_["score_threshold"].as<float>(),
- config_.nms_info_["nms_threshold"].as<float>(), num_class, reg_max);
- bbox_num->push_back(result->size());
- } else {
- Postprocess(imgs, result, out_bbox_num_data_, is_rbox);
- bbox_num->clear();
- for (int k = 0; k < out_bbox_num_data_.size(); k++) {
- int tmp = out_bbox_num_data_[k];
- bbox_num->push_back(tmp);
- }
- }
- auto postprocess_end = std::chrono::steady_clock::now();
- std::chrono::duration<float> preprocess_diff =
- preprocess_end - preprocess_start;
- times->push_back(double(preprocess_diff.count() * 1000));
- std::chrono::duration<float> inference_diff = inference_end - inference_start;
- times->push_back(double(inference_diff.count() / repeats * 1000));
- std::chrono::duration<float> postprocess_diff =
- postprocess_end - postprocess_start;
- times->push_back(double(postprocess_diff.count() * 1000));
- }
- std::vector<int> GenerateColorMap(int num_class) {
- auto colormap = std::vector<int>(3 * num_class, 0);
- for (int i = 0; i < num_class; ++i) {
- int j = 0;
- int lab = i;
- while (lab) {
- colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
- colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
- colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
- ++j;
- lab >>= 3;
- }
- }
- return colormap;
- }
- } // namespace PaddleDetection
|