123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include <ctime>
- #include <memory>
- #include <numeric>
- #include <string>
- #include <utility>
- #include <vector>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include "paddle_inference_api.h" // NOLINT
- #include "include/config_parser.h"
- #include "include/picodet_postprocess.h"
- #include "include/preprocess_op.h"
- #include "include/utils.h"
- using namespace paddle_infer;
- namespace PaddleDetection {
- // Generate visualization colormap for each class
- std::vector<int> GenerateColorMap(int num_class);
- // Visualiztion Detection Result
- cv::Mat
- VisualizeResult(const cv::Mat &img,
- const std::vector<PaddleDetection::ObjectResult> &results,
- const std::vector<std::string> &lables,
- const std::vector<int> &colormap, const bool is_rbox);
- class ObjectDetector {
- public:
- explicit ObjectDetector(const std::string &model_dir,
- const std::string &device = "CPU",
- bool use_mkldnn = false, int cpu_threads = 1,
- const std::string &run_mode = "paddle",
- const int batch_size = 1, const int gpu_id = 0,
- const int trt_min_shape = 1,
- const int trt_max_shape = 1280,
- const int trt_opt_shape = 640,
- bool trt_calib_mode = false) {
- this->device_ = device;
- this->gpu_id_ = gpu_id;
- this->cpu_math_library_num_threads_ = cpu_threads;
- this->use_mkldnn_ = use_mkldnn;
- this->trt_min_shape_ = trt_min_shape;
- this->trt_max_shape_ = trt_max_shape;
- this->trt_opt_shape_ = trt_opt_shape;
- this->trt_calib_mode_ = trt_calib_mode;
- config_.load_config(model_dir);
- this->use_dynamic_shape_ = config_.use_dynamic_shape_;
- this->min_subgraph_size_ = config_.min_subgraph_size_;
- threshold_ = config_.draw_threshold_;
- preprocessor_.Init(config_.preprocess_info_);
- LoadModel(model_dir, batch_size, run_mode);
- }
- // Load Paddle inference model
- void LoadModel(const std::string &model_dir, const int batch_size = 1,
- const std::string &run_mode = "paddle");
- // Run predictor
- void Predict(const std::vector<cv::Mat> imgs, const double threshold = 0.5,
- const int warmup = 0, const int repeats = 1,
- std::vector<PaddleDetection::ObjectResult> *result = nullptr,
- std::vector<int> *bbox_num = nullptr,
- std::vector<double> *times = nullptr);
- // Get Model Label list
- const std::vector<std::string> &GetLabelList() const {
- return config_.label_list_;
- }
- private:
- std::string device_ = "CPU";
- int gpu_id_ = 0;
- int cpu_math_library_num_threads_ = 1;
- bool use_mkldnn_ = false;
- int min_subgraph_size_ = 3;
- bool use_dynamic_shape_ = false;
- int trt_min_shape_ = 1;
- int trt_max_shape_ = 1280;
- int trt_opt_shape_ = 640;
- bool trt_calib_mode_ = false;
- // Preprocess image and copy data to input buffer
- void Preprocess(const cv::Mat &image_mat);
- // Postprocess result
- void Postprocess(const std::vector<cv::Mat> mats,
- std::vector<PaddleDetection::ObjectResult> *result,
- std::vector<int> bbox_num, std::vector<float> output_data_,
- std::vector<int> output_mask_data_, bool is_rbox);
- void SOLOv2Postprocess(
- const std::vector<cv::Mat> mats, std::vector<ObjectResult> *result,
- std::vector<int> *bbox_num, std::vector<int> out_bbox_num_data_,
- std::vector<int64_t> out_label_data_, std::vector<float> out_score_data_,
- std::vector<uint8_t> out_global_mask_data_, float threshold = 0.5);
- std::shared_ptr<Predictor> predictor_;
- Preprocessor preprocessor_;
- ImageBlob inputs_;
- float threshold_;
- ConfigPaser config_;
- };
- } // namespace PaddleDetection
|