faster_rcnn_reader.yml 1.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. worker_num: 2
  2. TrainReader:
  3. sample_transforms:
  4. - Decode: {}
  5. - RandomResizeCrop: {resizes: [400, 500, 600], cropsizes: [[384, 600], ], prob: 0.5}
  6. - RandomResize: {target_size: [[480, 1333], [512, 1333], [544, 1333], [576, 1333], [608, 1333], [640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 2}
  7. - RandomFlip: {prob: 0.5}
  8. - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  9. - Permute: {}
  10. batch_transforms:
  11. - PadBatch: {pad_to_stride: 32}
  12. batch_size: 2
  13. shuffle: true
  14. drop_last: true
  15. collate_batch: false
  16. EvalReader:
  17. sample_transforms:
  18. - Decode: {}
  19. - Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
  20. - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  21. - Permute: {}
  22. batch_transforms:
  23. - PadBatch: {pad_to_stride: 32}
  24. batch_size: 1
  25. shuffle: false
  26. drop_last: false
  27. TestReader:
  28. inputs_def:
  29. image_shape: [-1, 3, 640, 640]
  30. sample_transforms:
  31. - Decode: {}
  32. - Resize: {interp: 2, target_size: 640, keep_ratio: True}
  33. - Pad: {size: 640}
  34. - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  35. - Permute: {}
  36. batch_size: 1
  37. shuffle: false
  38. drop_last: false