sparse_rcnn_r50_fpn.yml 831 B

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. architecture: SparseRCNN
  2. pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
  3. SparseRCNN:
  4. backbone: ResNet
  5. neck: FPN
  6. head: SparseRCNNHead
  7. postprocess: SparsePostProcess
  8. ResNet:
  9. # index 0 stands for res2
  10. depth: 50
  11. norm_type: bn
  12. freeze_at: 0
  13. return_idx: [0,1,2,3]
  14. num_stages: 4
  15. FPN:
  16. out_channel: 256
  17. SparseRCNNHead:
  18. head_hidden_dim: 256
  19. head_dim_feedforward: 2048
  20. nhead: 8
  21. head_dropout: 0.0
  22. head_cls: 1
  23. head_reg: 3
  24. head_dim_dynamic: 64
  25. head_num_dynamic: 2
  26. head_num_heads: 6
  27. deep_supervision: true
  28. num_proposals: 100
  29. loss_func: SparseRCNNLoss
  30. SparseRCNNLoss:
  31. losses: ["labels", "boxes"]
  32. focal_loss_alpha: 0.25
  33. focal_loss_gamma: 2.0
  34. class_weight: 2.0
  35. l1_weight: 5.0
  36. giou_weight: 2.0
  37. SparsePostProcess:
  38. num_proposals: 100