solov2_r101_vd_fpn_3x_coco.yml 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. _BASE_: [
  2. '../datasets/coco_instance.yml',
  3. '../runtime.yml',
  4. '_base_/solov2_r50_fpn.yml',
  5. '_base_/optimizer_1x.yml',
  6. '_base_/solov2_reader.yml',
  7. ]
  8. pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams
  9. weights: output/solov2_r101_vd_fpn_3x_coco/model_final
  10. epoch: 36
  11. use_ema: true
  12. ema_decay: 0.9998
  13. ResNet:
  14. depth: 101
  15. variant: d
  16. freeze_at: 0
  17. return_idx: [0,1,2,3]
  18. dcn_v2_stages: [1,2,3]
  19. num_stages: 4
  20. SOLOv2Head:
  21. seg_feat_channels: 512
  22. stacked_convs: 4
  23. num_grids: [40, 36, 24, 16, 12]
  24. kernel_out_channels: 256
  25. solov2_loss: SOLOv2Loss
  26. mask_nms: MaskMatrixNMS
  27. dcn_v2_stages: [0, 1, 2, 3]
  28. SOLOv2MaskHead:
  29. mid_channels: 128
  30. out_channels: 256
  31. start_level: 0
  32. end_level: 3
  33. use_dcn_in_tower: True
  34. LearningRate:
  35. base_lr: 0.01
  36. schedulers:
  37. - !PiecewiseDecay
  38. gamma: 0.1
  39. milestones: [24, 33]
  40. - !LinearWarmup
  41. start_factor: 0.
  42. steps: 2000
  43. TrainReader:
  44. sample_transforms:
  45. - Decode: {}
  46. - Poly2Mask: {}
  47. - RandomResize: {interp: 1,
  48. target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]],
  49. keep_ratio: True}
  50. - RandomFlip: {}
  51. - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  52. - Permute: {}
  53. batch_transforms:
  54. - PadBatch: {pad_to_stride: 32}
  55. - Gt2Solov2Target: {num_grids: [40, 36, 24, 16, 12],
  56. scale_ranges: [[1, 96], [48, 192], [96, 384], [192, 768], [384, 2048]],
  57. coord_sigma: 0.2}
  58. batch_size: 2
  59. shuffle: true
  60. drop_last: true