123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- _BASE_: [
- 'denseteacher_fcos_r50_fpn_coco_semi010.yml',
- '../_base_/coco_detection_full.yml',
- ]
- log_iter: 100
- snapshot_epoch: 2
- epochs: &epochs 24
- weights: output/denseteacher_fcos_r50_fpn_coco_full/model_final
- ### pretrain and warmup config, choose one and coment another
- pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
- semi_start_iters: 5000
- ema_start_iters: 3000
- use_warmup: &use_warmup True
- ### global config
- use_simple_ema: True
- ema_decay: 0.9996
- ssod_method: DenseTeacher
- DenseTeacher:
- train_cfg:
- sup_weight: 1.0
- unsup_weight: 1.0
- loss_weight: {distill_loss_cls: 2.0, distill_loss_box: 1.0, distill_loss_quality: 1.0}
- concat_sup_data: True
- suppress: linear
- ratio: 0.01
- gamma: 2.0
- test_cfg:
- inference_on: teacher
- ### reader config
- worker_num: 2
- SemiTrainReader:
- sample_transforms:
- - Decode: {}
- - RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
- - RandomFlip: {}
- weak_aug:
- - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
- strong_aug:
- - StrongAugImage: {transforms: [
- RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
- RandomErasingCrop: {},
- RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
- RandomGrayscale: {prob: 0.2},
- ]}
- - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
- sup_batch_transforms:
- - Permute: {}
- - PadBatch: {pad_to_stride: 32}
- - Gt2FCOSTarget:
- object_sizes_boundary: [64, 128, 256, 512]
- center_sampling_radius: 1.5
- downsample_ratios: [8, 16, 32, 64, 128]
- num_shift: 0.5
- norm_reg_targets: True
- unsup_batch_transforms:
- - Permute: {}
- - PadBatch: {pad_to_stride: 32}
- sup_batch_size: 2
- unsup_batch_size: 2
- shuffle: True
- drop_last: True
- EvalReader:
- sample_transforms:
- - Decode: {}
- - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- - Permute: {}
- batch_transforms:
- - PadBatch: {pad_to_stride: 32}
- batch_size: 1
- TestReader:
- sample_transforms:
- - Decode: {}
- - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- - Permute: {}
- batch_transforms:
- - PadBatch: {pad_to_stride: 32}
- batch_size: 1
- fuse_normalize: True
- ### model config
- architecture: FCOS
- FCOS:
- backbone: ResNet
- neck: FPN
- fcos_head: FCOSHead
- ResNet:
- depth: 50
- variant: 'b'
- norm_type: bn
- freeze_at: 0 # res2
- return_idx: [1, 2, 3]
- num_stages: 4
- FPN:
- out_channel: 256
- spatial_scales: [0.125, 0.0625, 0.03125]
- extra_stage: 2
- has_extra_convs: True
- use_c5: False
- FCOSHead:
- fcos_feat:
- name: FCOSFeat
- feat_in: 256
- feat_out: 256
- num_convs: 4
- norm_type: "gn"
- use_dcn: False
- fpn_stride: [8, 16, 32, 64, 128]
- prior_prob: 0.01
- norm_reg_targets: True
- centerness_on_reg: True
- num_shift: 0.5
- fcos_loss:
- name: FCOSLoss
- loss_alpha: 0.25
- loss_gamma: 2.0
- iou_loss_type: "giou"
- reg_weights: 1.0
- quality: "iou"
- nms:
- name: MultiClassNMS
- nms_top_k: 1000
- keep_top_k: 100
- score_threshold: 0.025
- nms_threshold: 0.6
- ### other config
- epoch: *epochs
- LearningRate:
- base_lr: 0.01
- schedulers:
- - !PiecewiseDecay
- gamma: 0.1
- milestones: [*epochs]
- use_warmup: *use_warmup
- - !LinearWarmup
- start_factor: 0.001
- steps: 1000
- OptimizerBuilder:
- optimizer:
- momentum: 0.9
- type: Momentum
- regularizer:
- factor: 0.0001
- type: L2
- clip_grad_by_value: 1.0
|