123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- # Reference: https://github.com/CAPTAIN-WHU/DOTA_devkit
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import json
- import cv2
- from tqdm import tqdm
- from multiprocessing import Pool
- def load_dota_info(image_dir, anno_dir, file_name, ext=None):
- base_name, extension = os.path.splitext(file_name)
- if ext and (extension != ext and extension not in ext):
- return None
- info = {'image_file': os.path.join(image_dir, file_name), 'annotation': []}
- anno_file = os.path.join(anno_dir, base_name + '.txt')
- if not os.path.exists(anno_file):
- return info
- with open(anno_file, 'r') as f:
- for line in f:
- items = line.strip().split()
- if (len(items) < 9):
- continue
- anno = {
- 'poly': list(map(float, items[:8])),
- 'name': items[8],
- 'difficult': '0' if len(items) == 9 else items[9],
- }
- info['annotation'].append(anno)
- return info
- def load_dota_infos(root_dir, num_process=8, ext=None):
- image_dir = os.path.join(root_dir, 'images')
- anno_dir = os.path.join(root_dir, 'labelTxt')
- data_infos = []
- if num_process > 1:
- pool = Pool(num_process)
- results = []
- for file_name in os.listdir(image_dir):
- results.append(
- pool.apply_async(load_dota_info, (image_dir, anno_dir,
- file_name, ext)))
- pool.close()
- pool.join()
- for result in results:
- info = result.get()
- if info:
- data_infos.append(info)
- else:
- for file_name in os.listdir(image_dir):
- info = load_dota_info(image_dir, anno_dir, file_name, ext)
- if info:
- data_infos.append(info)
- return data_infos
- def process_single_sample(info, image_id, class_names):
- image_file = info['image_file']
- single_image = dict()
- single_image['file_name'] = os.path.split(image_file)[-1]
- single_image['id'] = image_id
- image = cv2.imread(image_file)
- height, width, _ = image.shape
- single_image['width'] = width
- single_image['height'] = height
- # process annotation field
- single_objs = []
- objects = info['annotation']
- for obj in objects:
- poly, name, difficult = obj['poly'], obj['name'], obj['difficult']
- if difficult == '2':
- continue
- single_obj = dict()
- single_obj['category_id'] = class_names.index(name) + 1
- single_obj['segmentation'] = [poly]
- single_obj['iscrowd'] = 0
- xmin, ymin, xmax, ymax = min(poly[0::2]), min(poly[1::2]), max(poly[
- 0::2]), max(poly[1::2])
- width, height = xmax - xmin, ymax - ymin
- single_obj['bbox'] = [xmin, ymin, width, height]
- single_obj['area'] = height * width
- single_obj['image_id'] = image_id
- single_objs.append(single_obj)
- return (single_image, single_objs)
- def data_to_coco(infos, output_path, class_names, num_process):
- data_dict = dict()
- data_dict['categories'] = []
- for i, name in enumerate(class_names):
- data_dict['categories'].append({
- 'id': i + 1,
- 'name': name,
- 'supercategory': name
- })
- pbar = tqdm(total=len(infos), desc='data to coco')
- images, annotations = [], []
- if num_process > 1:
- pool = Pool(num_process)
- results = []
- for i, info in enumerate(infos):
- image_id = i + 1
- results.append(
- pool.apply_async(
- process_single_sample, (info, image_id, class_names),
- callback=lambda x: pbar.update()))
- pool.close()
- pool.join()
- for result in results:
- single_image, single_anno = result.get()
- images.append(single_image)
- annotations += single_anno
- else:
- for i, info in enumerate(infos):
- image_id = i + 1
- single_image, single_anno = process_single_sample(info, image_id,
- class_names)
- images.append(single_image)
- annotations += single_anno
- pbar.update()
- pbar.close()
- for i, anno in enumerate(annotations):
- anno['id'] = i + 1
- data_dict['images'] = images
- data_dict['annotations'] = annotations
- with open(output_path, 'w') as f:
- json.dump(data_dict, f)
|