s2anet.yml 1.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. architecture: S2ANet
  2. pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
  3. weights: output/s2anet_r50_fpn_1x_dota/model_final.pdparams
  4. # Model Achitecture
  5. S2ANet:
  6. backbone: ResNet
  7. neck: FPN
  8. head: S2ANetHead
  9. ResNet:
  10. depth: 50
  11. variant: d
  12. norm_type: bn
  13. return_idx: [1,2,3]
  14. num_stages: 4
  15. FPN:
  16. in_channels: [256, 512, 1024]
  17. out_channel: 256
  18. spatial_scales: [0.25, 0.125, 0.0625]
  19. has_extra_convs: True
  20. extra_stage: 2
  21. relu_before_extra_convs: False
  22. S2ANetHead:
  23. anchor_strides: [8, 16, 32, 64, 128]
  24. anchor_scales: [4]
  25. anchor_ratios: [1.0]
  26. anchor_assign: RBoxAssigner
  27. stacked_convs: 2
  28. feat_in: 256
  29. feat_out: 256
  30. align_conv_type: 'AlignConv' # AlignConv Conv
  31. align_conv_size: 3
  32. use_sigmoid_cls: True
  33. reg_loss_weight: [1.0, 1.0, 1.0, 1.0, 1.1]
  34. cls_loss_weight: [1.1, 1.05]
  35. nms_pre: 2000
  36. nms:
  37. name: MultiClassNMS
  38. keep_top_k: -1
  39. score_threshold: 0.05
  40. nms_threshold: 0.1
  41. normalized: False
  42. RBoxAssigner:
  43. pos_iou_thr: 0.5
  44. neg_iou_thr: 0.4
  45. min_iou_thr: 0.0
  46. ignore_iof_thr: -2