yangjun dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 | 1 year ago | |
---|---|---|
.. | ||
_base_ | 1 year ago | |
application | 1 year ago | |
more_config | 1 year ago | |
pruner | 1 year ago | |
README.md | 1 year ago | |
picodet_l_320_coco.yml | 1 year ago | |
picodet_l_416_coco.yml | 1 year ago | |
picodet_l_640_coco.yml | 1 year ago | |
picodet_m_320_coco.yml | 1 year ago | |
picodet_m_416_coco.yml | 1 year ago | |
picodet_s_320_coco.yml | 1 year ago | |
picodet_s_320_voc.yml | 1 year ago | |
picodet_s_416_coco.yml | 1 year ago |
Model | Input size | mAPval 0.5:0.95 | mAPval 0.5 | Params (M) | FLOPS (G) | LatencyNCNN (ms) LatencyLite |
(ms) Download |
Config |
PicoDet-S |
320*320 |
27.1 |
41.4 |
0.99 |
0.73 |
8.13 |
6.65 |
model | log |
config |
PicoDet-S |
416*416 |
30.7 |
45.8 |
0.99 |
1.24 |
12.37 |
9.82 |
model | log |
config |
PicoDet-M |
320*320 |
30.9 |
45.7 |
2.15 |
1.48 |
11.27 |
9.61 |
model | log |
config |
PicoDet-M |
416*416 |
34.8 |
50.5 |
2.15 |
2.50 |
17.39 |
15.88 |
model | log |
config |
PicoDet-L |
320*320 |
32.9 |
48.2 |
3.30 |
2.23 |
15.26 |
13.42 |
model | log |
config |
PicoDet-L |
416*416 |
36.6 |
52.5 |
3.30 |
3.76 |
23.36 |
21.85 |
model | log |
config |
PicoDet-L |
640*640 |
40.9 |
57.6 |
3.30 |
8.91 |
54.11 |
50.55 |
model | log |
config |
|
---|
Model | Input size | mAPval 0.5:0.95 | mAPval 0.5 | Params (M) | FLOPS (G) | LatencyNCNN (ms) LatencyLite |
(ms) Download |
Config |
PicoDet-Shufflenetv2 1x |
416*416 |
30.0 |
44.6 |
1.17 |
1.53 |
15.06 |
10.63 |
model | log |
config |
PicoDet-MobileNetv3-large 1x |
416*416 |
35.6 |
52.0 |
3.55 |
2.80 |
20.71 |
17.88 |
model | log |
config |
PicoDet-LCNet 1.5x |
416*416 |
36.3 |
52.2 |
3.10 |
3.85 |
21.29 |
20.8 |
model | log |
config |
PicoDet-LCNet 1.5x |
640*640 |
40.6 |
57.4 |
3.10 |
- |
- |
- |
model | log |
config |
PicoDet-R18 |
640*640 |
40.7 |
57.2 |
11.10 |
- |
- |
- |
model | log |
config |
|
---|
Model | Input size | ONNX | Paddle Lite(fp32) | Paddle Lite(fp16) |
---|---|---|---|---|
PicoDet-S | 320*320 | model | model | model |
PicoDet-S | 416*416 | model | model | model |
PicoDet-M | 320*320 | model | model | model |
PicoDet-M | 416*416 | model | model | model |
PicoDet-L | 320*320 | model | model | model |
PicoDet-L | 416*416 | model | model | model |
PicoDet-L | 640*640 | model | model | model |
PicoDet-Shufflenetv2 1x | 416*416 | model | model | model |
PicoDet-MobileNetv3-large 1x | 416*416 | model | model | model |
PicoDet-LCNet 1.5x | 416*416 | model | model | model |
@misc{yu2021pppicodet,
title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
year={2021},
eprint={2111.00902},
archivePrefix={arXiv},
primaryClass={cs.CV}
}