picodet_v2.yml 1.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. architecture: PicoDet
  2. pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/LCNet_x1_5_pretrained.pdparams
  3. PicoDet:
  4. backbone: LCNet
  5. neck: LCPAN
  6. head: PicoHeadV2
  7. LCNet:
  8. scale: 1.5
  9. feature_maps: [3, 4, 5]
  10. LCPAN:
  11. out_channels: 128
  12. use_depthwise: True
  13. num_features: 4
  14. PicoHeadV2:
  15. conv_feat:
  16. name: PicoFeat
  17. feat_in: 128
  18. feat_out: 128
  19. num_convs: 4
  20. num_fpn_stride: 4
  21. norm_type: bn
  22. share_cls_reg: True
  23. use_se: True
  24. fpn_stride: [8, 16, 32, 64]
  25. feat_in_chan: 128
  26. prior_prob: 0.01
  27. reg_max: 7
  28. cell_offset: 0.5
  29. grid_cell_scale: 5.0
  30. static_assigner_epoch: 100
  31. use_align_head: True
  32. static_assigner:
  33. name: ATSSAssigner
  34. topk: 9
  35. force_gt_matching: False
  36. assigner:
  37. name: TaskAlignedAssigner
  38. topk: 13
  39. alpha: 1.0
  40. beta: 6.0
  41. loss_class:
  42. name: VarifocalLoss
  43. use_sigmoid: False
  44. iou_weighted: True
  45. loss_weight: 1.0
  46. loss_dfl:
  47. name: DistributionFocalLoss
  48. loss_weight: 0.5
  49. loss_bbox:
  50. name: GIoULoss
  51. loss_weight: 2.5
  52. nms:
  53. name: MultiClassNMS
  54. nms_top_k: 1000
  55. keep_top_k: 100
  56. score_threshold: 0.025
  57. nms_threshold: 0.6