ocsort_ppyoloe.yml 1.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. # This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT.
  2. _BASE_: [
  3. '../bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml',
  4. '../bytetrack/_base_/mot17.yml',
  5. '../bytetrack/_base_/ppyoloe_mot_reader_640x640.yml'
  6. ]
  7. weights: output/ocsort_ppyoloe/model_final
  8. log_iter: 20
  9. snapshot_epoch: 2
  10. metric: MOT # eval/infer mode, set 'COCO' can be training mode
  11. num_classes: 1
  12. architecture: ByteTrack
  13. pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_300e_coco.pdparams
  14. ByteTrack:
  15. detector: YOLOv3 # PPYOLOe version
  16. reid: None
  17. tracker: OCSORTTracker
  18. det_weights: https://bj.bcebos.com/v1/paddledet/models/mot/ppyoloe_crn_l_36e_640x640_mot17half.pdparams
  19. reid_weights: None
  20. YOLOv3:
  21. backbone: CSPResNet
  22. neck: CustomCSPPAN
  23. yolo_head: PPYOLOEHead
  24. post_process: ~
  25. # Tracking requires higher quality boxes, so NMS score_threshold will be higher
  26. PPYOLOEHead:
  27. fpn_strides: [32, 16, 8]
  28. grid_cell_scale: 5.0
  29. grid_cell_offset: 0.5
  30. static_assigner_epoch: -1 # 100
  31. use_varifocal_loss: True
  32. loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5}
  33. static_assigner:
  34. name: ATSSAssigner
  35. topk: 9
  36. assigner:
  37. name: TaskAlignedAssigner
  38. topk: 13
  39. alpha: 1.0
  40. beta: 6.0
  41. nms:
  42. name: MultiClassNMS
  43. nms_top_k: 1000
  44. keep_top_k: 100
  45. score_threshold: 0.1 # 0.01 in original detector
  46. nms_threshold: 0.4 # 0.6 in original detector
  47. OCSORTTracker:
  48. det_thresh: 0.4 # 0.6 in yolox ocsort
  49. max_age: 30
  50. min_hits: 3
  51. iou_threshold: 0.3
  52. delta_t: 3
  53. inertia: 0.2
  54. vertical_ratio: 0
  55. min_box_area: 0
  56. use_byte: False
  57. use_angle_cost: False
  58. # MOTDataset for MOT evaluation and inference
  59. EvalMOTDataset:
  60. !MOTImageFolder
  61. dataset_dir: dataset/mot
  62. data_root: MOT17/images/half
  63. keep_ori_im: True # set as True in DeepSORT and ByteTrack
  64. TestMOTDataset:
  65. !MOTImageFolder
  66. dataset_dir: dataset/mot
  67. keep_ori_im: True # set True if save visualization images or video