mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker.yml 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. _BASE_: [
  2. '../fairmot/fairmot_dla34_30e_1088x608.yml',
  3. '../../datasets/mcmot.yml'
  4. ]
  5. metric: MCMOT
  6. num_classes: 4
  7. # for MCMOT training
  8. TrainDataset:
  9. !MCMOTDataSet
  10. dataset_dir: dataset/mot
  11. image_lists: ['visdrone_mcmot_vehicle.train']
  12. data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
  13. label_list: label_list.txt
  14. EvalMOTDataset:
  15. !MOTImageFolder
  16. dataset_dir: dataset/mot
  17. data_root: visdrone_mcmot_vehicle/images/val
  18. keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
  19. anno_path: dataset/mot/visdrone_mcmot_vehicle/label_list.txt
  20. # for MCMOT video inference
  21. TestMOTDataset:
  22. !MOTImageFolder
  23. dataset_dir: dataset/mot
  24. keep_ori_im: True # set True if save visualization images or video
  25. anno_path: dataset/mot/visdrone_mcmot_vehicle/label_list.txt
  26. pretrain_weights: https://paddledet.bj.bcebos.com/models/centernet_dla34_140e_coco.pdparams
  27. FairMOT:
  28. detector: CenterNet
  29. reid: FairMOTEmbeddingHead
  30. loss: FairMOTLoss
  31. tracker: JDETracker # multi-class tracker
  32. CenterNetHead:
  33. regress_ltrb: False
  34. CenterNetPostProcess:
  35. regress_ltrb: False
  36. max_per_img: 200
  37. JDETracker:
  38. min_box_area: 0
  39. vertical_ratio: 0 # no need to filter bboxes according to w/h
  40. use_byte: True
  41. match_thres: 0.8
  42. conf_thres: 0.4
  43. low_conf_thres: 0.2
  44. weights: output/mcfairmot_dla34_30e_1088x608_visdrone_vehicle_bytetracker/model_final
  45. epoch: 30
  46. LearningRate:
  47. base_lr: 0.0005
  48. schedulers:
  49. - !PiecewiseDecay
  50. gamma: 0.1
  51. milestones: [10, 20]
  52. use_warmup: False
  53. OptimizerBuilder:
  54. optimizer:
  55. type: Adam
  56. regularizer: NULL