yangjun dfa27afb39 提交PaddleDetection develop 分支 d56cf3f7c294a7138013dac21f87da4ea6bee829 | 1 year ago | |
---|---|---|
.. | ||
_base_ | 1 year ago | |
README.md | 1 year ago | |
README_cn.md | 1 year ago | |
fairmot_dla34_30e_1088x608.yml | 1 year ago | |
fairmot_dla34_30e_1088x608_airplane.yml | 1 year ago | |
fairmot_dla34_30e_1088x608_bytetracker.yml | 1 year ago | |
fairmot_dla34_30e_576x320.yml | 1 year ago | |
fairmot_dla34_30e_864x480.yml | 1 year ago | |
fairmot_enhance_dla34_60e_1088x608.yml | 1 year ago | |
fairmot_enhance_hardnet85_30e_1088x608.yml | 1 year ago | |
fairmot_hrnetv2_w18_dlafpn_30e_1088x608.yml | 1 year ago | |
fairmot_hrnetv2_w18_dlafpn_30e_576x320.yml | 1 year ago | |
fairmot_hrnetv2_w18_dlafpn_30e_864x480.yml | 1 year ago |
English | 简体中文
FairMOT is based on an Anchor Free detector Centernet, which overcomes the problem of anchor and feature misalignment in anchor based detection framework. The fusion of deep and shallow features enables the detection and ReID tasks to obtain the required features respectively. It also uses low dimensional ReID features. FairMOT is a simple baseline composed of two homogeneous branches propose to predict the pixel level target score and ReID features. It achieves the fairness between the two tasks and obtains a higher level of real-time MOT performance.
In addition, PaddleDetection also provides PP-Tracking real-time multi-object tracking system. PP-Tracking is the first open source real-time Multi-Object Tracking system, and it is based on PaddlePaddle deep learning framework. It has rich models, wide application and high efficiency deployment.
PP-Tracking supports two paradigms: single camera tracking (MOT) and multi-camera tracking (MTMCT). Aiming at the difficulties and pain points of actual business, PP-Tracking provides various MOT functions and applications such as pedestrian tracking, vehicle tracking, multi-class tracking, small object tracking, traffic statistics and multi-camera tracking. The deployment method supports API and GUI visual interface, and the deployment language supports Python and C++, The deployment platform environment supports Linux, NVIDIA Jetson, etc.
PP-tracking provides an AI studio public project tutorial. Please refer to this tutorial.
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34(paper) | 1088x608 | 83.3 | 81.9 | 544 | 3822 | 14095 | - | - | - |
DLA-34 | 1088x608 | 83.2 | 83.1 | 499 | 3861 | 14223 | - | model | config |
DLA-34 | 864x480 | 80.8 | 81.1 | 561 | 3643 | 16967 | - | model | config |
DLA-34 | 576x320 | 74.0 | 76.1 | 640 | 4989 | 23034 | - | model | config |
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34(paper) | 1088x608 | 74.9 | 72.8 | 1074 | - | - | 25.9 | - | - |
DLA-34 | 1088x608 | 75.0 | 74.7 | 919 | 7934 | 36747 | - | model | config |
DLA-34 | 864x480 | 73.0 | 72.6 | 977 | 7578 | 40601 | - | model | config |
DLA-34 | 576x320 | 69.9 | 70.2 | 1044 | 8869 | 44898 | - | model | config |
Notes:
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34 | 1088x608 | 75.9 | 74.7 | 1021 | 11425 | 31475 | - | model | config |
HarDNet-85 | 1088x608 | 75.0 | 70.0 | 1050 | 11837 | 32774 | - | model | config |
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34 | 1088x608 | 75.3 | 74.2 | 3270 | 29112 | 106749 | - | model | config |
HarDNet-85 | 1088x608 | 74.7 | 70.7 | 3210 | 29790 | 109914 | - | model | config |
Notes:
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
HRNetV2-W18 | 1088x608 | 71.7 | 66.6 | 1340 | 8642 | 41592 | - | model | config |
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
HRNetV2-W18 | 1088x608 | 70.7 | 65.7 | 4281 | 22485 | 138468 | - | model | config |
HRNetV2-W18 | 864x480 | 70.3 | 65.8 | 4056 | 18927 | 144486 | - | model | config |
HRNetV2-W18 | 576x320 | 65.3 | 64.8 | 4137 | 28860 | 163017 | - | model | config |
Notes:
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34 | 1088x608 | 69.1 | 72.8 | 299 | 1957 | 14412 | - | model | config |
DLA-34 + BYTETracker | 1088x608 | 70.3 | 73.2 | 234 | 2176 | 13598 | - | model | config |
Notes:
JDETracker:
use_byte: True
match_thres: 0.8
conf_thres: 0.4
low_conf_thres: 0.2
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34 | 1088x608 | 96.6 | 94.7 | 19 | 300 | 466 | - | model | config |
Note:
wget https://bj.bcebos.com/v1/paddledet/data/mot/airplane.zip
, unzip and store it in the dataset/mot
, and then copy the airplane.train
to dataset/mot/image_lists
.min_box_area
and vertical_ratio
of the tracker in the corresponding config file, like this:
JDETracker:
conf_thres: 0.4
tracked_thresh: 0.4
metric_type: cosine
min_box_area: 0 # 200 for pedestrian
vertical_ratio: 0 # 1.6 for pedestrian
Training FairMOT on 2 GPUs with following command
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608/ --gpus 0,1 tools/train.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml
Evaluating the track performance of FairMOT on val dataset in single GPU with following commands:
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final.pdparams
Notes:
configs/datasets/mot.yml
:
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video
{output_dir}/mot_results/
, and every sequence has one txt file, each line of the txt file is frame,id,x1,y1,w,h,score,-1,-1,-1
, and you can set {output_dir}
by --output_dir
.Inference a video on single GPU with following command:
# inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos
Notes:
apt-get update && apt-get install -y ffmpeg
.CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
Notes:
--save_mot_txts
to save the txt result file, or --save_images
to save the visualization images.frame,id,x1,y1,w,h,score,-1,-1,-1
.python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
Notes:
configs/keypoint/README.md
.@article{zhang2020fair,
title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
journal={arXiv preprint arXiv:2004.01888},
year={2020}
}
@article{shao2018crowdhuman,
title={CrowdHuman: A Benchmark for Detecting Human in a Crowd},
author={Shao, Shuai and Zhao, Zijian and Li, Boxun and Xiao, Tete and Yu, Gang and Zhang, Xiangyu and Sun, Jian},
journal={arXiv preprint arXiv:1805.00123},
year={2018}
}