yolox_x_24e_800x1440_ht21.yml 1.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. # This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT.
  2. _BASE_: [
  3. '../../../yolox/yolox_x_300e_coco.yml',
  4. '../_base_/ht21.yml',
  5. ]
  6. weights: output/yolox_x_24e_800x1440_ht21/model_final
  7. log_iter: 20
  8. snapshot_epoch: 2
  9. # schedule configuration for fine-tuning
  10. epoch: 24
  11. LearningRate:
  12. base_lr: 0.0005 # fintune
  13. schedulers:
  14. - !CosineDecay
  15. max_epochs: 24
  16. min_lr_ratio: 0.05
  17. last_plateau_epochs: 4
  18. - !ExpWarmup
  19. epochs: 1
  20. OptimizerBuilder:
  21. optimizer:
  22. type: Momentum
  23. momentum: 0.9
  24. use_nesterov: True
  25. regularizer:
  26. factor: 0.0005
  27. type: L2
  28. TrainReader:
  29. batch_size: 4
  30. mosaic_epoch: 20
  31. # detector configuration
  32. architecture: YOLOX
  33. pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolox_x_300e_coco.pdparams
  34. norm_type: sync_bn
  35. use_ema: True
  36. ema_decay: 0.9999
  37. ema_decay_type: "exponential"
  38. act: silu
  39. find_unused_parameters: True
  40. depth_mult: 1.33
  41. width_mult: 1.25
  42. YOLOX:
  43. backbone: CSPDarkNet
  44. neck: YOLOCSPPAN
  45. head: YOLOXHead
  46. input_size: [800, 1440]
  47. size_stride: 32
  48. size_range: [18, 32] # multi-scale range [576*1024 ~ 800*1440], w/h ratio=1.8
  49. CSPDarkNet:
  50. arch: "X"
  51. return_idx: [2, 3, 4]
  52. depthwise: False
  53. YOLOCSPPAN:
  54. depthwise: False
  55. # Tracking requires higher quality boxes, so NMS score_threshold will be higher
  56. YOLOXHead:
  57. l1_epoch: 20
  58. depthwise: False
  59. loss_weight: {cls: 1.0, obj: 1.0, iou: 5.0, l1: 1.0}
  60. assigner:
  61. name: SimOTAAssigner
  62. candidate_topk: 10
  63. use_vfl: False
  64. nms:
  65. name: MultiClassNMS
  66. nms_top_k: 1000
  67. keep_top_k: 100
  68. score_threshold: 0.01
  69. nms_threshold: 0.7
  70. # For speed while keep high mAP, you can modify 'nms_top_k' to 1000 and 'keep_top_k' to 100, the mAP will drop about 0.1%.
  71. # For high speed demo, you can modify 'score_threshold' to 0.25 and 'nms_threshold' to 0.45, but the mAP will drop a lot.