1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- # This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT.
- _BASE_: [
- '../../../yolox/yolox_x_300e_coco.yml',
- '../_base_/ht21.yml',
- ]
- weights: output/yolox_x_24e_800x1440_ht21/model_final
- log_iter: 20
- snapshot_epoch: 2
- # schedule configuration for fine-tuning
- epoch: 24
- LearningRate:
- base_lr: 0.0005 # fintune
- schedulers:
- - !CosineDecay
- max_epochs: 24
- min_lr_ratio: 0.05
- last_plateau_epochs: 4
- - !ExpWarmup
- epochs: 1
- OptimizerBuilder:
- optimizer:
- type: Momentum
- momentum: 0.9
- use_nesterov: True
- regularizer:
- factor: 0.0005
- type: L2
- TrainReader:
- batch_size: 4
- mosaic_epoch: 20
- # detector configuration
- architecture: YOLOX
- pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolox_x_300e_coco.pdparams
- norm_type: sync_bn
- use_ema: True
- ema_decay: 0.9999
- ema_decay_type: "exponential"
- act: silu
- find_unused_parameters: True
- depth_mult: 1.33
- width_mult: 1.25
- YOLOX:
- backbone: CSPDarkNet
- neck: YOLOCSPPAN
- head: YOLOXHead
- input_size: [800, 1440]
- size_stride: 32
- size_range: [18, 32] # multi-scale range [576*1024 ~ 800*1440], w/h ratio=1.8
- CSPDarkNet:
- arch: "X"
- return_idx: [2, 3, 4]
- depthwise: False
- YOLOCSPPAN:
- depthwise: False
- # Tracking requires higher quality boxes, so NMS score_threshold will be higher
- YOLOXHead:
- l1_epoch: 20
- depthwise: False
- loss_weight: {cls: 1.0, obj: 1.0, iou: 5.0, l1: 1.0}
- assigner:
- name: SimOTAAssigner
- candidate_topk: 10
- use_vfl: False
- nms:
- name: MultiClassNMS
- nms_top_k: 1000
- keep_top_k: 100
- score_threshold: 0.01
- nms_threshold: 0.7
- # For speed while keep high mAP, you can modify 'nms_top_k' to 1000 and 'keep_top_k' to 100, the mAP will drop about 0.1%.
- # For high speed demo, you can modify 'score_threshold' to 0.25 and 'nms_threshold' to 0.45, but the mAP will drop a lot.
|