gfl_slim_ld_r18vd_1x_coco.yml 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. _BASE_: [
  2. '../datasets/coco_detection.yml',
  3. '../runtime.yml',
  4. '_base_/optimizer_1x.yml',
  5. '_base_/gfl_reader.yml',
  6. ]
  7. weights: output/gfl_r18vd_1x_coco/model_final
  8. find_unused_parameters: True
  9. architecture: GFL
  10. pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams
  11. GFL:
  12. backbone: ResNet
  13. neck: FPN
  14. head: LDGFLHead
  15. ResNet:
  16. depth: 18
  17. variant: d
  18. norm_type: bn
  19. freeze_at: 0
  20. return_idx: [1,2,3]
  21. num_stages: 4
  22. FPN:
  23. out_channel: 256
  24. spatial_scales: [0.125, 0.0625, 0.03125]
  25. extra_stage: 2
  26. has_extra_convs: true
  27. use_c5: false
  28. LDGFLHead: # new head
  29. conv_feat:
  30. name: FCOSFeat
  31. feat_in: 256
  32. feat_out: 256
  33. num_convs: 4
  34. norm_type: "gn"
  35. use_dcn: false
  36. fpn_stride: [8, 16, 32, 64, 128]
  37. prior_prob: 0.01
  38. reg_max: 16
  39. loss_class:
  40. name: QualityFocalLoss
  41. use_sigmoid: True
  42. beta: 2.0
  43. loss_weight: 1.0
  44. loss_dfl:
  45. name: DistributionFocalLoss
  46. loss_weight: 0.25
  47. loss_bbox:
  48. name: GIoULoss
  49. loss_weight: 2.0
  50. loss_ld:
  51. name: KnowledgeDistillationKLDivLoss
  52. loss_weight: 0.25
  53. T: 10
  54. loss_ld_vlr:
  55. name: KnowledgeDistillationKLDivLoss
  56. loss_weight: 0.25
  57. T: 10
  58. loss_kd:
  59. name: KnowledgeDistillationKLDivLoss
  60. loss_weight: 10
  61. T: 2
  62. nms:
  63. name: MultiClassNMS
  64. nms_top_k: 1000
  65. keep_top_k: 100
  66. score_threshold: 0.025
  67. nms_threshold: 0.6