fcos_r50_fpn_iou_1x_coco.yml 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. _BASE_: [
  2. '../datasets/coco_detection.yml',
  3. '../runtime.yml',
  4. '_base_/fcos_r50_fpn.yml',
  5. '_base_/optimizer_1x.yml',
  6. '_base_/fcos_reader.yml',
  7. ]
  8. weights: output/fcos_r50_fpn_iou_1x_coco/model_final
  9. TrainReader:
  10. sample_transforms:
  11. - Decode: {}
  12. - RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
  13. - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
  14. - RandomFlip: {}
  15. batch_transforms:
  16. - Permute: {}
  17. - PadBatch: {pad_to_stride: 32}
  18. - Gt2FCOSTarget:
  19. object_sizes_boundary: [64, 128, 256, 512]
  20. center_sampling_radius: 1.5
  21. downsample_ratios: [8, 16, 32, 64, 128]
  22. norm_reg_targets: True
  23. batch_size: 2
  24. shuffle: True
  25. drop_last: True
  26. EvalReader:
  27. sample_transforms:
  28. - Decode: {}
  29. - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
  30. - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
  31. - Permute: {}
  32. batch_transforms:
  33. - PadBatch: {pad_to_stride: 32}
  34. batch_size: 1
  35. TestReader:
  36. sample_transforms:
  37. - Decode: {}
  38. - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
  39. - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
  40. - Permute: {}
  41. batch_transforms:
  42. - PadBatch: {pad_to_stride: 32}
  43. batch_size: 1
  44. fuse_normalize: True
  45. FCOSHead:
  46. fcos_feat:
  47. name: FCOSFeat
  48. feat_in: 256
  49. feat_out: 256
  50. num_convs: 4
  51. norm_type: "gn"
  52. use_dcn: False
  53. fpn_stride: [8, 16, 32, 64, 128]
  54. prior_prob: 0.01
  55. norm_reg_targets: True
  56. centerness_on_reg: True
  57. fcos_loss:
  58. name: FCOSLoss
  59. loss_alpha: 0.25
  60. loss_gamma: 2.0
  61. iou_loss_type: "giou"
  62. reg_weights: 1.0
  63. quality: "iou" # default 'centerness'
  64. nms:
  65. name: MultiClassNMS
  66. nms_top_k: 1000
  67. keep_top_k: 100
  68. score_threshold: 0.025
  69. nms_threshold: 0.6