rec_chinese_lite_train_v2.0.yml 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. Global:
  2. use_gpu: true
  3. epoch_num: 500
  4. log_smooth_window: 20
  5. print_batch_step: 10
  6. save_model_dir: ./output/rec_chinese_lite_v2.0
  7. save_epoch_step: 3
  8. # evaluation is run every 5000 iterations after the 4000th iteration
  9. eval_batch_step: [0, 2000]
  10. cal_metric_during_train: True
  11. pretrained_model:
  12. checkpoints:
  13. save_inference_dir:
  14. use_visualdl: False
  15. infer_img: doc/imgs_words/ch/word_1.jpg
  16. # for data or label process
  17. character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  18. max_text_length: 25
  19. infer_mode: False
  20. use_space_char: True
  21. save_res_path: ./output/rec/predicts_chinese_lite_v2.0.txt
  22. Optimizer:
  23. name: Adam
  24. beta1: 0.9
  25. beta2: 0.999
  26. lr:
  27. name: Cosine
  28. learning_rate: 0.001
  29. warmup_epoch: 5
  30. regularizer:
  31. name: 'L2'
  32. factor: 0.00001
  33. Architecture:
  34. model_type: rec
  35. algorithm: CRNN
  36. Transform:
  37. Backbone:
  38. name: MobileNetV3
  39. scale: 0.5
  40. model_name: small
  41. small_stride: [1, 2, 2, 2]
  42. Neck:
  43. name: SequenceEncoder
  44. encoder_type: rnn
  45. hidden_size: 48
  46. Head:
  47. name: CTCHead
  48. fc_decay: 0.00001
  49. Loss:
  50. name: CTCLoss
  51. PostProcess:
  52. name: CTCLabelDecode
  53. Metric:
  54. name: RecMetric
  55. main_indicator: acc
  56. Train:
  57. dataset:
  58. name: SimpleDataSet
  59. data_dir: ./train_data/
  60. label_file_list: ["./train_data/train_list.txt"]
  61. transforms:
  62. - DecodeImage: # load image
  63. img_mode: BGR
  64. channel_first: False
  65. - RecAug:
  66. - CTCLabelEncode: # Class handling label
  67. - RecResizeImg:
  68. image_shape: [3, 32, 320]
  69. - KeepKeys:
  70. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  71. loader:
  72. shuffle: True
  73. batch_size_per_card: 256
  74. drop_last: True
  75. num_workers: 8
  76. Eval:
  77. dataset:
  78. name: SimpleDataSet
  79. data_dir: ./train_data
  80. label_file_list: ["./train_data/val_list.txt"]
  81. transforms:
  82. - DecodeImage: # load image
  83. img_mode: BGR
  84. channel_first: False
  85. - CTCLabelEncode: # Class handling label
  86. - RecResizeImg:
  87. image_shape: [3, 32, 320]
  88. - KeepKeys:
  89. keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  90. loader:
  91. shuffle: False
  92. drop_last: False
  93. batch_size_per_card: 256
  94. num_workers: 8