Paper:
Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition Hui Jiang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Wenqi Ren, Fei Wu, and Wenming Tan ICDAR, 2021
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Model | Backbone | config | Acc | Download link |
---|---|---|---|---|
RFL-CNT | ResNetRFL | rec_resnet_rfl_visual.yml | 93.40% | 训练模型 |
RFL-Att | ResNetRFL | rec_resnet_rfl_att.yml | 88.63% | 训练模型 |
Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone" to clone the project code.
PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
#step1:train the CNT branch
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_visual.yml
#step2:joint training of CNT and Att branches
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
Evaluation:
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
Prediction:
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model={path/to/weights}/best_accuracy
First, the model saved during the RFL text recognition training process is converted into an inference model. ( Model download link) ), you can use the following command to convert:
python3 tools/export_model.py -c configs/rec/rec_resnet_rfl_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.save_inference_dir=./inference/rec_resnet_rfl_att
Note:
character_dict_path
in the configuration file to the modified dictionary file.infer_shape
corresponding to NRTR in the tools/export_model.py
file.After the conversion is successful, there are three files in the directory:
/inference/rec_resnet_rfl_att/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
For RFL text recognition model inference, the following commands can be executed:
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_resnet_rfl_att/' --rec_algorithm='RFL' --rec_image_shape='1,32,100'
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows: The result is as follows:
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999927282333374)
Not supported
Not supported
Not supported
@article{2021Reciprocal,
title = {Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition},
author = {Jiang, H. and Xu, Y. and Cheng, Z. and Pu, S. and Niu, Y. and Ren, W. and Wu, F. and Tan, W. },
booktitle = {ICDAR},
year = {2021},
url = {https://arxiv.org/abs/2105.06229}
}