algorithm_rec_vitstr.md 5.8 KB

场景文本识别算法-ViTSTR

1. 算法简介

论文信息:

Vision Transformer for Fast and Efficient Scene Text Recognition Rowel Atienza ICDAR, 2021

ViTSTR使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下:

模型 骨干网络 配置文件 Acc 下载链接
ViTSTR ViTSTR rec_vitstr_none_ce.yml 79.82% 训练模型

2. 环境配置

请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。

3. 模型训练、评估、预测

3.1 模型训练

请参考文本识别训练教程。PaddleOCR对代码进行了模块化,训练ViTSTR识别模型时需要更换配置文件ViTSTR配置文件

启动训练

具体地,在完成数据准备后,便可以启动训练,训练命令如下:

#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_vitstr_none_ce.yml

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_vitstr_none_ce.yml

3.2 评估

可下载已训练完成的模型文件,使用如下命令进行评估:

# 注意将pretrained_model的路径设置为本地路径。
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy

3.3 预测

使用如下命令进行单张图片预测:

# 注意将pretrained_model的路径设置为本地路径。
python3 tools/infer_rec.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。

4. 推理部署

4.1 Python推理

首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例(模型下载地址 ),可以使用如下命令进行转换:

# 注意将pretrained_model的路径设置为本地路径。
python3 tools/export_model.py -c configs/rec/rec_vitstr_none_ce.yml -o Global.pretrained_model=./rec_vitstr_none_ce_train/best_accuracy Global.save_inference_dir=./inference/rec_vitstr/

注意:

  • 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的character_dict_path是否是所需要的字典文件。
  • 如果您修改了训练时的输入大小,请修改tools/export_model.py文件中的对应ViTSTR的infer_shape

转换成功后,在目录下有三个文件:

/inference/rec_vitstr/
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息,可忽略
    └── inference.pdmodel           # 识别inference模型的program文件

执行如下命令进行模型推理:

python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_vitstr/' --rec_algorithm='ViTSTR' --rec_image_shape='1,224,224' --rec_char_dict_path='./ppocr/utils/EN_symbol_dict.txt'
# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/imgs_words_en/'。

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下: 结果如下:

Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9998350143432617)

注意

  • 训练上述模型采用的图像分辨率是[1,224,224],需要通过参数rec_image_shape设置为您训练时的识别图像形状。
  • 在推理时需要设置参数rec_char_dict_path指定字典,如果您修改了字典,请修改该参数为您的字典文件。
  • 如果您修改了预处理方法,需修改tools/infer/predict_rec.py中ViTSTR的预处理为您的预处理方法。

4.2 C++推理部署

由于C++预处理后处理还未支持ViTSTR,所以暂未支持

4.3 Serving服务化部署

暂不支持

4.4 更多推理部署

暂不支持

5. FAQ

  1. ViTSTR论文中,使用在ImageNet1k上的预训练权重进行初始化训练,我们在训练未采用预训练权重,最终精度没有变化甚至有所提高。
  2. 我们仅仅复现了ViTSTR中的tiny版本,如果需要使用small、base版本,可将ViTSTR源repo 中的预训练权重转为Paddle权重使用。

引用

@article{Atienza2021ViTSTR,
  title     = {Vision Transformer for Fast and Efficient Scene Text Recognition},
  author    = {Rowel Atienza},
  booktitle = {ICDAR},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.08582}
}